Application of a production planning model based on linear programming and machine learning techniques

  • Lucas Vianna Vaz Industrial Engineering, Pontifical Catholic University of Paraná - PUCPR, Curitiba, Paraná, Brazil http://orcid.org/0009-0005-3469-0366
  • Marcelo Carneiro Gonçalves Industrial Engineering, Pontifical Catholic University of Paraná - PUCPR, Curitiba, Paraná, Brazil http://orcid.org/0000-0002-4957-6057
  • Izamara Cristina Palheta Dias Industrial Engineering, Pontifical Catholic University of Paraná - PUCPR, Curitiba, Paraná, Brazil http://orcid.org/0000-0001-5413-0423
  • Elpídio Oscar Benitez Nara Industrial Engineering, Pontifical Catholic University of Paraná - PUCPR, Curitiba, Paraná, Brazil http://orcid.org/0000-0002-4947-953X

Abstract

The absence of efficient optimization methods combined with Artificial Intelligence concepts has led to inefficiencies and high costs in the production planning of organizations. Thus, this study aims to optimize production planning in an electronic equipment company, using Linear Programming and Machine Learning to support assertive and efficient decisions. The methodological process comprises seven stages: Literature review; Collection and analysis of production data; Application of Machine Learning methods for modelling; Selection of the best model; Development and application of the Linear Programming model; Analysis of results; Validation with stakeholders. The approach resulted in optimized production planning, capable of reducing operating costs and assisting in the daily decision-making of the organization. The Machine Learning forecasting technique achieved an average error of 9%, demonstrating its accuracy in forecasting future demand. This study evidences a robust and promising approach to improve efficiency and effectiveness in production planning operations. In this context, the union between Operations Research and Machine Learning emerges as a response to existing gaps and a driving direction for continuously optimizing these crucial processes.

Downloads

Download data is not yet available.

References

I.C. Baierle, J.L. Schaefer, M.A. Sellitto, J.C. Furtado, and E.O.B. Nara, “Moona software for survey classification and evaluation of criteria to support decision-making for properties portfolio”, International Journal of Strategic Property Management, vol.24, no.2, pp.226–236, 2020. DOI: https://doi.org/10.3846/ijspm.2020.12338

L.D.D. Nora, J.C.M. Siluk, A.L.N. Júnior, E.O.B. Nara, and J.C. Furtado, “The performance measurement of innovation and competitiveness in the telecommunications services sector”. International Journal of Business Excellence, 9(2), pp.210–224, 2016. DOI: https://doi.org/10.1504/IJBEX.2016.074844.

J.L. Schaefer, I.C. Baierle, M.A. Sellitto, J.C. Furtado, and E.O.B. Nara, “Competitiveness Scale as a Basis for Brazilian Small and Medium-Sized Enterprises”. EMJ - Engineering Management Journal, vol.33. no. 4, pp.255–271 2021. DOI: https://doi.org/10.1080/10429247.2020.1800385.

A. S. Pereira, M. C. Goncalves, E. O. B. Nara, andT. F. Ferraz, “Application of machine learning methods in forecasting sales prices in a project consultancy”. Produto e Produção. vol. 24, no. 2, pp. 1-12, 2023. DOI: https://doi.org/10.22456/1983-8026.127422.

M. C. Gonçalves, E. O. B. Nara, I. M. Dos Santos, I. B. Mateus, and L. M. B. do Amaral, “Comparative analysis of machine learning techniques via data mining in a railroad company In Deschamps, F.; Pinheiro de Lima, E.; Gouvêa da Costa, S.E.; G. Trentin, M. (Org.)”. Proceedings of the 11th International Conference on Production Research Americas. ICPR 2022. 1ed.Berlin: Springer Nature, vol. 1, pp. 655-664, 2022. Doi: 10.1007/978-3-031-36121-0_83.

M. Goncalves, A. Pereira, T. Ferraz, E. Nara, and I. Dias, “Predicting project sales prices using machine learning techniques: a case study in a project consultancy”. International Joint Conference on Industrial Engineering and Operations Management, IJCIEOM 2022. Springer Proceedings in Mathematics and Statistics 2023. Doi: http://dx.doi.org/10.14488.

B. Topu, and N. Cakici Alp, “Machine learning in architecture”, vol. 154, 2023.

S. Pandey, N. J. Basisth, T. Sachan, N. Kumari and P. Pakray, “Quantum machine learning for natural language processing application”, Physic A: Statistical Mechanics and its applications, vol. 627, 2023. doi: https://doi.org/10.1016/j.physa.2023.129123

H. Frederick and J. Lieberman. “Introduction to operations research”. Available at: My Library, (9th edition). Group A, 2013.

K. Hamasaki, M.C. Gonçalves, O. C. Junior, E. O. B. Nara, and R.R.G Wollmann, “Robust linear programming application for the production planning problem” In Deschamps, F.; Pinheiro de Lima, E.; Gouvêa da Costa, S.E.; G. Trentin, M. (Org.). Deschamps, F., Pinheiro de Lima, E., Gouvêa da Costa, S.E., G. Trentin, M. (eds) Proceedings of the 11th International Conference on Production Research Americas. ICPR 2022.. 1ed.Berlin: Springer Nature, 2022, vol. 1, pp. 647-654, 2022 Doi: 10.1007/978-3-031-36121-0_82.

I. Dias, R. Sampaio, R. Wollmann, M. Goncalves, and E. Nara, “A Decomposition Scheme in Production Planning Based on Linear Programming that Incorporates the Concept of a Dynamic Planning Environment”. International Joint Conference on Industrial Engineering and Operations Management, IJCIEOM 2022. Springer Proceedings in Mathematics and Statistics, 2023. http://dx.doi.org/10.14488/IJCIEOM2023_FULL_0031_37690.

M. Goncalves, R. Sampaio, R. Wollmann, E. Nara, and I. Dias, “Using robust approach concept to solve the production planning problem in manufacturing systems”. International Joint Conference on Industrial Engineering and Operations Management, IJCIEOM 2022. Springer Proceedings in Mathematics and Statistics 2023. http://dx.doi.org/10.14488/IJCIEOM2023_FULL_0031_37686.

M.C. Gonçalves, R. R. G. Wollmann, and R. J. B. Sampaio, “Proposal of a Numerical Approximation Theory to Solve the Robust Convex Problem of Production Planning”, Internacional Journal of Operational Research, 2023. Doi: 10.1504/IJOR.2022.10049618.

M. Gonçalves, A. Canciglieri, K. Strobel, M. Antunes, and R. Zanellato, “Application of operational research in process optimization in the cement industry”, JETIA, vol. 6, no. 24, pp. 36-40, Aug. 2020. Doi: https://doi.org/10.5935/jetia.v6i24.677.

G. de Faria, J. Tulik, and M. Gonçalves, “Proposition of A Lean Flow of Processes Based on The Concept of Process Mapping For A Bubalinocultura Based Dairy”, JETIA, vol. 5, no. 18, pp. 23-28, Jun. 2019. Doi 10.5935/2447-0228.20190022 (2019).

O. J. Junior and M. Gonçalves, “Application of Quality and Productivity Improvement Tools in A Potato Chips Production Line”, JETIA, vol. 5, no. 18, pp. 65-72, Jun. 2019.

F. Serra, E. Nara, M. Gonçalves, S. Costa, and S. Bortoluzzi, “Preliminary construct for decision making in organizations: a systemic approach”. In: Deschamps, F.; Pinheiro de Lima, E.; Gouvêa da Costa, S.E.; G. Trentin, M. (Org.). Proceedings of the 11th International Conference on Production Research Americas, 1ed.Berlin: Springer Nature, vol. 1, pp. 639-646, 2022. Doi: 10.1007/978-3-031-36121-0_81.

F. Lourenço, E. Nara, M. Goncalves, O. Canciglieri, “Preliminary Construct of Sustainable Product Development with a Focus on the Brazilian Reality: A Review and Bibliometric Analysis”. In: Leal Filho, W.; Frankenberger, F.;Tortato, U.. (Org.). Sustainability in Practice. 1ed.Suiça: Springer Nature, vol. 1, pp. 197-220, 2023. Doi: 10.1007/978-3-031-34436-7_12.

P.R.Tardio, J.L. Schaefer, E.O.B. Nara, M.C. Gonçalves, I.C.P. Dias, G.B. Benitez, and A. Castro e Silva, "The link between lean manufacturing and Industry 4.0 for product development process: a systemic approach", Journal of Manufacturing Technology Management, Vol. ahead-of-print No. ahead-of-print. 2023. https://doi.org/10.1108/JMTM-03-2023-0118.

G. Cardoso and I. C. Dias, "Mapping Process Improvement and Sequencing Analysis for Productive Definitions:" JETIA, vol. 6, no. 21, pp. 66-71, Feb. 2020.

F. Stankevecz and I. C. Dias, “System Integrated Management for Stock Management in a Beverage Distributor: A Proposal Based on A Case Study”, JETIA, vol. 5, no. 18, pp. 58-64, Jun. 2019.

Published
2024-02-29
How to Cite
Vaz, L., Gonçalves, M., Dias, I., & Nara, E. (2024). Application of a production planning model based on linear programming and machine learning techniques. ITEGAM-JETIA, 10(45), 17-29. https://doi.org/10.5935/jetia.v10i45.920
Section
Articles