Android application for identification of vehicle plates for traffic inspection
Abstract
Traffic inspection is present in the daily lives of drivers. However, this inspectional process often presents itself in an inefficient and archaic way, by using paper and pen to write down the infractions committed, especially in regions lacking the latest technology. Thus, the objective of this work is to present a possible solution to this problem, with the development of a prototype application that allows the user to perform these inspections in a digital way. The methodology used includes a visit to Centro de Cooperação da Cidade (CCC) in Manaus, Amazonas, to analyze the current scenario of the city's traffic inspection system, as well as the determination of methods to integrate the information between the application developed and PRODAM's database. At the end of the research and development, the significant potential to aid traffic agents is verified, and presents direction for future research in the area to improve what was developed in this work.
Downloads
References
A. E. R. Cannel; P. A. Gold, “Reduzindo Acidentes: O papel da fiscalização de trânsito e do treinamento de motoristas”. 1º.ed. Washington: Banco Interamericano de Desenvolvimento, 2001. Available in: <https://books.google.com.br/books?hl=pt-BR&lr=&id=MwXrmVo5_K0C&oi=fnd&pg=PP7&dq=fiscaliza%C3%A7%C3%A3o+de+tr%C3%A2nsito&ots=0Uak0H06_O&sig=rhnpWgHLFjjFaTty7za5GnJb4AQ#v=onepage&q&f=false>. Access in August 22, 2022.
P. S. Weber; E. M. Luz; R. J. Lunkes; D. Schnorrenberger, “Análise da Aplicação do Sistema OCR: um Estudo de Caso entre um Porto Brasileiro e um Porto Europeu”. Congresso Nacional de Desempenho Portuário, 2016. Available in: <https://2016.cidesport.com.br/sites/default/files/a52193.pdf> Access in Augusto 22, 2022.
J. A. de Souza, “Reconhecimento de padrões usando indexação recursiva”. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Santa Catarina. Santa Catarina, p. 8-9. 1999.
P. R. Meneses; T. de Almeida; A. N. Santa Rosa; E. e Sano; E. B. de Souza; G. M. Baptista; R. S. Brites. “Introdução ao Sensoriamento de Imagens por Processamento Remoto”. Editora UnB, 2012.
R. C. Gonzales; R. E. Woods. “Processamento de imagens digitais”. Edgard Blücher, 2000.
R. Mithe; S. Indalkar; N. Divekar. “Optical Character Recognition”. International Journal of Recent Technology and Engineering (IJRTE), India, v. 2, nº 1, pg. 72-75, march. 2013.
G. Bonaccorso. “Machine learning algorithms”. Packt Publishing Ltd, 2017.
V. Nasteski. “An overview of the supervised machine learning methods”. Horizons. b, v. 4, p. 51-62, 2017.
D. Calvo. "Supervised Learning". March 23, 2019. Available in: <https://www.diegocalvo.es/en/supervised-learning>. Access in: April 6, 2022.
M. Harrison. “Machine Learning–Guia de Referência Rápida: Trabalhando com dados estruturados em Python”. Novatec Editora, 2019.
JavaTPoint. "Regression vs. Classification in Machine Learning". 2022. Available in: <https://www.javatpoint.com/regression-vs-classification-in-machine-learning>. Access in: April 6, 2022.
H. G. Santos. “Comparação da performance de algoritmos de machine learning para a análise preditiva em saúde pública e medicina”. Tese de Doutorado. Universidade de São Paulo. 2018.
Z. Ghahramani. “Unsupervised learning”. In: Summer school on machine learning. Springer, Berlin, Heidelberg, 2003. p. 72-112.
T. S. Madhulatha. “An overview on clustering methods”. arXiv preprint arXiv:1205.1117. 2012.
A. A. Marcos; M. Yamada; A. Kimura; T. Iwata. “Clustering-based anomaly detection in multi-view data”. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management. p. 1545-1548. 2013.
L. V. D. Maaten; E. Postma; J. V. D. Herik. “Dimensionality reduction: a comparative”. J Mach Learn Res, v. 10, n. 66-71, p. 13, 2009.
M. Helms; S. V. Ault; G. Mao; J. Wang. “An overview of Google Brain and its applications”. Proceedings of the 2018 International Conference on Big Data and Education. p. 72-75. 2018.
X. Zhu; A. B. Goldberg. “Introduction to semi-supervised learning”. Synthesis lectures on artificial intelligence and machine learning, v. 3, n. 1, p. 1-130, 2009.
S. Jain. "Introduction to Pseudo-Labelling: A Semi-Supervised learning technique". September 21, 2017. Available in: <https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervised-learning-technique>. Access in: April 6, 2022
M. F. Balcan; A. Blum; P. P. Choi; J. Lafferty; B. Pantano; M. R. Rwebangira; X. Zhu. “Person identification in webcam images: An application of semi-supervised learning”. ICML 2005 Workshop on Learning with Partially Classified Training Data. p. 6. 2005.
L. P. Kaelbling; M. L. Littman; A. W. Moore. “Reinforcement learning: A survey”. Journal of artificial intelligence research, v. 4, p. 237-285, 1996.
M. Sugiyama. “Statistical reinforcement learning: modern machine learning approaches”. CRC Press, v. 1, p. 3-7, 2015.
W. Martins; U. R. Afonseca; L. E. Nalini; V. M. Gomes. “Tutoriais inteligentes baseados em aprendizado por reforço: concepção, implementação e avaliação empírica”. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE). p. 550-559. 2007.
L. Moura; G. Camargo. “Impacto econômico e social do Android no Brasil”. Bain & Company, [S. l.], p. 4-6, 21 set. 2020.
Acrítica. “Manaus tem um veículo para cada 2,6 habitantes”. Manaus, 15 de janeiro de 2022. Available in: <https://www.acritica.com/opiniao/manaus-tem-um-veiculo-para-cada-2-6-habitantes-1.218471>. Access in: April 7, 2022
J. V. C. Moura; A. B. Silva; A. A. M. Almeida; A. K. Q. Alves. “Utilização de aplicativo para abordar as características gerais das aves paraibanas”. South American Journal of Basic Education, Technical and Technological, v. 7, n. 2, p. 799-815, 2020.
Android Developers. Bumblebee | 2021.1.1 Patch 2. [S.I.]. “Meet Android Studio”, 2022. Available in: <https://developer.android.com/studio/intro>. Access in: April 5, 2022.
D. Prasanna. “Dependency injection: design patterns using spring and guice”. Simon and Schuster, 2009.
D. Hermes; N. Mazloumi. “Data Access with SQLite and Data Binding”. Building Xamarin. Forms Mobile Apps Using XAML. Apress, Berkeley, CA. p. 347-415. 2019.
R. T. Yunandar; D. Hariyanto; M. Fahmi. “Penerapan Lokal Basis Data Android Room Database (Studi Kasus: Aplikasi Ekspedisi)”. Jurnal Akrab Juara, v. 6, n. 2, p. 115-125, 2021.
M. P. Gonçalves. “MLKit Text Recognition Evaluation”. Faculdade de engenharia da universidade do porto, p. 17, 2022.
M. Jokel. “Implementing a TensorFlow-Slim based Android app for image classification”. Fakultat fur Informatik der Technischen Universitat Munchen. p. 23, 2020.
This work is licensed under a Creative Commons Attribution 4.0 International License.