Design of an automatic license plate reader

Abstract

The increase in the number of vehicles and the alarming rate of theft and defaulters daily prompts the need for sophisticated matching technology to curb car theft, reduce traffic offenders, and any other anomalies/irregularities affecting vehicles’ smooth operation. This study deals with the design of an automatic license plate reader which automatically captures an image of the vehicle’s license plate, transforms that image into alphanumeric characters using optical character recognition or similar high-tech software, and compares the plate number acquired to one or more databases of vehicles of interest to law enforcement and other agencies against those of stolen cars or people suspected of being involved in criminal activities. The automated capture, analysis, and comparison of vehicle license plates typically occur within seconds enabling the officer in charge to take appropriate actions.

Downloads

Download data is not yet available.

References

A. Hasnat and A. Nakib, ‘Neurocomputing Robust license plate signatures matching based on multi-task learning approach’, Neurocomputing, vol. 440, pp. 58–71, 2021, http://doi.org/10.1016/j.neucom.2020.12.102.

R. Wang, N. Sang, R. Huang, and Y. Wang, ‘Optik License plate detection using gradient information and cascade detectors’, Opt. - Int. J. Light Electron Opt., vol. 125, no. 1, pp. 186–190, 2014, http://doi.org/10.1016/j.ijleo.2013.06.008.

A. Sasi, S. Sharma, and A. N. Cheeran, ‘Automatic Car Number Plate Recognition.’, in International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–6, http://doi.org/10.1109/ICIIECS.2017.8275893.

M. S. Silva and R. C. Jung, ‘Real-time license plate detection and recognition using deep convolutional neural networks’, J. Vis. Commun. Image Represent., vol. 71, p. 102773, 2020, http://doi.org/10.1016/j.jvcir.2020.102773.

C. I. . Patel, D. . Shah, and A. A. Patel, ‘Automatic Number Plate Recognition System (ANPR): A Survey’, Int. J. Comput. Appl., vol. 69, pp. 21–33, 2013.

Y. Shima, ‘Extraction of number plate images based on image category classification using deep learning’, IEEE Int. Symp. Robot. Intell. Sensors, pp. 19–26, 2016, http://doi.org/10.1109/IRIS.2016.8066060.

R. I. Dalarmelina, N.d.V. Teixeira, M.A. Meneguette, ‘A real-time automatic plate recognition system based on optical character recognition and wireless sensor networks for ITS’, Sensors, vol. 20, no. 1, p. 55, 2020, doi: http://dx.doi.org/10.3390/s20010055.

P. Greenberg, ‘Automated License Plate Readers’, National Conference of State Legislatures, 2015. https://www.ncsl.org/research/telecommunications-and-information-technology/automated-license-plate-readers.aspx (accessed Oct. 03, 2022).

S. Azam and M. Islam, ‘Automatic license plate detection in hazardous condition’, J. Vis. Commun. Image Represent., vol. 36, pp. 172–186, 2016, http://doi.org/10.1016/j.jvcir.2016.01.015.

Y. Kessentini, M. Dhia, S. Ammar, and A. Chabbouh, ‘A two-stage deep neural network for multi-norm license plate detection and recognition’, vol. 136, pp. 159–170, 2019, http://doi.org/10.1016/j.eswa.2019.06.036.

ANPR International, ‘What is ANPR?’, 2021. http://www.anpr-international.com/What -is-ANPR (accessed Jan. 10, 2022).

J. Tang, L. Wan, J. Schooling, P. Zhao, J. Chen, and S. Wei, ‘Automatic number plate recognition ( ANPR ) in smart cities : A systematic review on technological advancements and application cases’, Cities, vol. 129, no. May, p. 103833, 2022, http://doi.org/10.1016/j.cities.2022.103833.

E. Prem, C. Roy, A. Bhandari Thapa, K. Shrestha, P. Karmacharya, and R. Karna, ‘Vehicle Number Plate Recognition and Parking System’, Int. Res. J. Innov. Eng. Technol., vol. 2, no. 10, pp. 18–23, 2018.

M. A. Asif, A. M., Hannan, S. A., Perwej, Y., & Vithalrao, ‘An Overview and Applications of Optical Character Recognition’, Int. J. Adv. Res. Sci. Eng., vol. 3, no. 7, pp. 261–274, 2014.

X. Zhan, R. Li, and S. V Ukkusuri, ‘Link-based traffic state estimation and prediction for arterial networks using license-plate recognition data’, Transp. Res. Part C, vol. 117, no. April, p. 102660, 2020, http://doi.org/10.1016/j.trc.2020.102660.

G. Guarnieri, M. Fontani, F. Guzzi, S. Carrato, and M. Jerian, ‘Forensic Science International : Digital Investigation Perspective registration and multi-frame super-resolution of license plates in surveillance videos’, Forensic Sci. Int. Digit. Investig., vol. 36, p. 301087, 2021, http://doi.org/10.1016/j.fsidi.2020.301087.

Y. Jamtsho, P. Riyamongkol, and R. Waranusast, ‘Real-time license plate detection for non-helmeted motorcyclist using YOLO’, ICT Express, vol. 7, no. 1, pp. 104–109, 2021, http://doi.org/10.1016/j.icte.2020.07.008.

M. Satsangi, M. Yadav, and P. S. Sudhish, ‘License Plate Recognition: A Comparative Study on Thresholding, OCR and Machine Learning Approaches’, Int. Conf. Bioinforma. Syst. Biol., pp. 1–6, 2018, http://doi.org/10.1109/BSB.2018.8770662.

N. Omar, A. Sengur, S. Ganim, and S. Al-ali, ‘Cascaded deep learning-based efficient approach for license plate detection and recognition’, Expert Syst. Appl., vol. 149, p. 113280, 2020 http://doi.org/10.1016/j.eswa.2020.113280.

J. Gao, L. Sun, and M. Cai, ‘Quantifying privacy vulnerability of individual mobility traces : A case study of license plate recognition data’, Transp. Res. Part C, vol. 104, no. September 2018, pp. 78–94, 2019, http://doi.org/10.1016/j.trc.2019.04.022.

Z. Selmi, B. H. Halima, and A. M. Alimi, ‘Deep Learning System for Automatic License Plate Detection and Recognition’, 14th IAPR Int. Conf. Doc. Anal. Recognit., vol. 01, pp. 1132–1138, 2017, http://doi.org/10.1109/ICDAR.2017.187.

P. Shivakumara et al., ‘Fractional means based method for multi-oriented keyword spotting in video / scene / license plate images’, Expert Syst. Appl., vol. 118, pp. 1–19, 2019, http://doi.org/10.1016/j.eswa.2018.08.015.

R. Wang, N. Sang, R. Wang, and L. Jiang, ‘Optik Detection and tracking strategy for license plate detection in video’, Opt. - Int. J. Light Electron Opt., vol. 125, no. 10, pp. 2283–2288, 2014, http://doi.org/10.1016/j.ijleo.2013.10.126.

Published
2022-10-31
How to Cite
Olajide, M., Adelakun, N., Kuponiyi, D., Jagun, Z., & Odeyemi, C. (2022). Design of an automatic license plate reader. ITEGAM-JETIA, 8(37), 21-27. https://doi.org/10.5935/jetia.v8i37.833
Section
Articles

Most read articles by the same author(s)