Effects of lubricooling conditions on machining forces and surface roughness in radial grooving

  • Elias S. C. Espíndola Department of Mechanical Engineering (DEMEC), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil http://orcid.org/0000-0003-2845-4373
  • Heraldo J. Amorim Department of Mechanical Engineering (DEMEC), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil http://orcid.org/0000-0002-0498-6378
  • André J. Souza Department of Mechanical Engineering (DEMEC), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil http://orcid.org/0000-0001-5649-7333

Abstract

Radial grooving is a machining process usually applied to generate grooves for thread relief, O-ring positioning, or even cutting-off operations. Due to the high machining forces and difficult chip removal, radial grooving is considered a critical process, and cutting fluids are usually applied for cooling, lubricating, and assistance on the chip removal. Compressed air (AIR) and minimum quantity lubrication (MQL) are lubri-cooling methods studied as environmentally-friendly alternatives to conventional flood (WET) applications of cutting fluids. Although already applied for years in several machining processes, the research associated with using alternative lubri-cooling techniques in radial grooving is incipient. This work presents a comparative analysis of these methods (WET, MQL, and AIR) and their radial grooving effects. In each case, a factorial design of experiments was used to evaluate the influence of lubri-cooling conditions, cutting speed, and feed rate over feed force, cutting force, and surface roughness. Results indicate that both AIR and MQL may be suitable substitutes for traditional WET lubrication when active force components and surface finish are considered. Besides, smaller cutting forces were obtained with AIR machining for radial grooving, followed by MQL and WET machining.

Downloads

Download data is not yet available.

References

Smith, G. T., Cutting Tool Technology: Industrial Handbook, Springer, London, 2008. https://doi.org/10.1007/978-1-84800-205-0.

López de Lacalle, L. N., Lamikiz, A., Fernández de Larrinoa, J. and Azkona, I., “Advanced cutting tools”, In: Machining of Hard Materials, Springer, London, pp. 33-86, 2011. https://doi.org/10.1007/978-1-84996-450-0_2.

Canter, N., "Metalworking fluids: the quest for bioresistance", Tribol. Lubr. Technol., vol. 75, no. 3, pp. 46-58, 2019. http://upisecke.za.net/MWF_biocide.pdf.

Dahmus, I. B. and Gutowski, T.G. "An environmental analysis of machining", In: Proc. ASME IMECE Conf., Anaheim, California, Nov. 13-19, 2004. http://web.mit.edu/ebm/www/Publications/ASME2004-62600.pdf.

Sharma, V. S., Dogra, M. and Suri, N. M., "Cooling techniques for improved productivity in turning", Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 435-453, 2009. https://doi.org/10.1016/j.ijmachtools.2008.12.010.

Carou, D., Rubio, E. M. and Davim, J. P., "A note on the use of the minimum quantity lubrication (MQL) system in turning", Ind. Lubr. Tribol., vol. 67, no. 3, pp. 256-261, 2015. https://doi.org/10.1108/ILT-07-2014-0070.

Rao, R..V., "Cutting fluid selection for a given machining application", In: Decision Making in the Manufacturing Environment, Springer, London, pp 97-114, 2007. https://doi.org/10.1007/978-1-84628-819-7_8.

Araújo Jr., A. S., Sales, W. F., Silva, R. B. et al., "Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing", J. Clean. Prod., vol. 156, pp. 635-647, 2017. https://doi.org/10.1016/j.jclepro.2017.04.061.

Katna, R., Singha, K., Agrawala, N. and Jain, S., "Green manufacturing – performance of a biodegradable cutting fluid", Mat. Manuf. Process, vol. 32, no. 13, pp. 1522-1527, 2017. https://doi.org/10.1080/10426914.2017.1328119.

Ozimina, D., Madej, M., Kowalczyk, J. and Ozimina, E., “Tool wear in dry turning and wet turning with non-toxic cutting fluid”, Ind. Lubr. Tribol., vol. 70, no. 9, pp. 1649-1653, 2018. https://doi.org/10.1108/ILT-02-2018-0080.

Wickramasinghe, K. C., Perera, G. I. P. and Herath, H. M. C. M., "Formulation and performance evaluation of a novel coconut oil-based metalworking fluid", Mat. Manuf. Process., vol. 32, no. 9, pp. 1026-1033, 2017. https://doi.org/10.1080/10426914.2016.1257858.

Ranganath, M.S. and Vipin, H., "Optimization of process parameters in turning operation using response surface methodology: a review", IJETAE, vol. 4, no.10, pp. 351-360, 2014. https://ijetae.com/files/Volume4Issue10/IJETAE_1014_55.pdf.

Varghese, V., Ramesh, M. R. and Chakradhar, B., "Experimental investigation and optimization of machining parameters for sustainable machining", Mater. Manuf. Process., vol 33, no. 16, pp. 1782-1792, 2018. https://doi.org/10.1080/10426914.2018.1476760.

Dhar, N. R., Islam, M. W., Islam, S. and Mithu, M. A. H., "The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel", J. Mater. Process. Technol., vol. 171, pp. 93-99, 2006. https://doi.org/10.1016/j.jmatprotec.2005.06.047.

Lohar, D. V. and Nanavaty, C. R., "Performance evaluation of minimum quantity lubrication (MQL) using CBN tool during hard turning of AISI 4340 and its comparison with dry and wet turning", Bonfring Int. J. Ind. Eng. Manage. Sci., vol. 3, pp. 102-106, 2013. https://doi.org/10.9756/BIJIEMS.4392.

Kurgin, S., Dasch, J. M., Simon, D. L. et al., "Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL)", Ind. Lubr. Tribol., vol. 64, no. 6, pp. 376-386, 2012. https://doi.org/10.1108/00368791211262516.

Islam, M. N., "Effect of additional factors on dimensional accuracy and surface finish of turned parts", Mac. Sci. Technol., vol. 17, no. 1, pp. 145-162, 2013. https://doi.org/10.1080/10910344.2012.747936.

Frăţilă, D. and Caizar, C., "Investigation of the influence of process parameters and cooling method on the surface quality of AISI-1045 during turning", Mater. Manuf. Process., vol. 27, no. 10, pp. 1123-1128, 2008. https://doi.org/10.1080/10426914.2012.677905.

Tasdelen, B., Thordenberg, H. and Olofsson, D., "An experimental investigation on contact length during minimum quantity lubrication (MQL) machining", J. Mater. Process. Technol., vol. 203, no. 1-3, pp. 221-231, 2008. https://doi.org/10.1016/j.jmatprotec.2007.10.027.

Das, R. K., Kumar, R., Sarkar, G. et al., "Comparative machining performance of hardened AISI 4340 steel under dry and minimum quantity lubrication environments", Mater. Today: Proc., vol. 5, no. 11, pp. 24898-24906, 2018. https://doi.org/10.1016/j.matpr.2018.10.289.

Kumar, S., Singh, D. and Kalsi, N. S., "Analysis of surface roughness during machining of hardened AISI 4340 steel using minimum quantity lubrication", Mater. Today: Proc., vol. 4, no. 2, pp. 3627-3635, 2017. https://doi.org/10.1016/j.matpr.2018.10.289.

Okokpujie, I. P., Bolu, C. A., Ohunakin, O. S. et al., "A review of recent application of machining techniques, based on the phenomena of CNC machining operations", Procedia Manuf., vol. 35, pp. 1054-1060, 2019. https://doi.org/10.1016/j.promfg.2019.06.056.

Masoudi, S., Vafadar, A., Hadad, M. and Jafarian, F., "Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel", Mater. Manuf. Process., vol. 33, no. 9, pp. 1011-1019, 2018. https://doi.org/10.1080/10426914.2017.1401716.

Rahim, E. A. and Dorairaju, H., "Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining", Meas., vol. 123, pp. 213-225, 2018. https://doi.org/10.1016/j.measurement.2018.03.015.

Sani, A. S. A., Rahim, E. A., Sharif, S. and Sasahara, H., "Machining performance of vegetable oil with phosphonium- and ammonium-based ionic liquids via MQL technique", J. Clean. Prod., vol. 209, pp. 947-964, 2019. https://doi.org/10.1016/j.jclepro.2018.10.317.

Dixit, U. S., Sarma, D. K. and Davim, J. P., "Machining with minimal cutting fluid", In: Environmentally Friendly Machining, Springer, Boston, pp 9-17, 2012. https://doi.org/10.1007/978-1-4614-2308-9_2.

Elshwain, A. E. I., Redzuan, N. and Yusof, N. M., "Machinability of nickel and titanium alloys under of gas-based coolant-lubricants (CLs): a review", Int. J. Res. Eng. Technol., vol. 2, no. 11, pp. 690-702, 2013. https://doi.org/10.15623/ijret.2013.0211106.

Stanford, M., Lister, P. M., Morgan, C. and Kibble, K. A., "Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970-80A15 (En32b) plain carbon steel using WC–Co uncoated tooling", J. Mater. Process. Technol., vol. 209, no. 2, pp. 961-972, 2009. https://doi.org/10.1016/j.jmatprotec.2008.03.003.

Sarma, D. K. and Dixit, U. S., "A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool", J. Mater. Process. Technol., vol. 190, no. 1-3, pp. 160-172, 2007. https://doi.org/10.1016/j.jmatprotec.2007.02.049.

Yildiz, Y. and Nalbant, M., "A review of cryogenic cooling in machining processes", Int. J. Mach. Tools Manuf., vol. 48, no. 9, pp. 947-964, 2008. https://doi.org/10.1016/j.ijmachtools.2008.01.008.

Shokrani, A., Dhokia, V., Muñoz-Escalona, P. and Newman, S. T., "State-of-the-art cryogenic machining and processing", Int. J. Comput. Integr. Manuf., vol. 26, no. 7, pp. 616-648, 2013. https://doi.org/10.1080/0951192X.2012.749531.

Ross, K. N. S. and Manimaran, G., "Machining investigation of Nimonic‑80A superalloy under cryogenic CO2 as coolant using PVD‑TiAlN/TiN coated tool at 45°", Arab. J. Sci. Eng., vol. 45, pp. 9267-9281, 2020. https://doi.org/10.1007/s13369-020-04728-8.

Shokrani, A., Dhokia, V. and Newman, S.T., "Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluid", Int. J. Mach. Tools Manuf., vol. 57, pp. 83-101, 2012. https://doi.org/10.1016/j.ijmachtools.2012.02.002.

Dhananchezian, M., Kumar, M. P. and Rajadurai, A., "Experimental investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process", Int. J. Recent. Trend Eng., vol. 1, no. 5, pp. 55-59, 2009.

Jerold, B. D. and Kumar, M. P., "Experimental comparison of carbon dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel", Cryogenics, vol. 52, no. 10, pp. 569-574, 2012. https://doi.org/10.1016/j.cryogenics.2012.07.009.

Obikawa, T., Kamata, Y. and Shinozuka, J., "High-speed grooving with applying MQL", Int. J. Mach. Tools Manuf., vol. 46, no. 14, pp. 1854-1861, 2006. https://doi.org/10.1016/j.ijmachtools.2005.11.007.

Machai, C., Iqbal, A., Biermann, D. et al., "On the effects of cutting speed and cooling methodologies in grooving operation of various tempers of β-titanium alloy", J. Mater. Process. Technol., vol. 213, no. 7, pp. 1027-1037, 2013. https://doi.org/10.1016/j.jmatprotec.2013.01.021.

Oschelski, T. B., Urasato, W. T., Amorim, H. J. and Souza, A. J. "Effect of cutting conditions on surface roughness in finish turning Hastelloy X superalloy", Mater. Today: Proc., vol. 44, no. 1, pp. 532-537, 2021. https://doi.org/10.1016/j.matpr.2020.10.211.

Polly, M. S., Mayrhofer, A. and Souza, A. J., "Performance of ISO P and ISO S carbide tools in hard turning of AISI 4140 under dry and MQL conditions", Ingeniare Rev. Chil. Ing., vol. 28, no. 1, pp. 95-105, 2020. https://doi.org/10.4067/S0718-33052020000100095.

Liang, X., Liu, Z., Liu, W. and Li, X., "Sustainability assessment of dry turning Ti-6Al-4V employing uncoated cemented carbide tools as clean manufacturing process", J. Clean. Prod., vol. 214, pp. 279-289, 2019. https://doi.org/10.1016/j.jclepro.2018.12.196.

Sartori, S., Moro, L., Ghiotti, A. and Bruschi, S., "On the tool wear mechanisms in dry and cryogenic turning additive manufactured titanium alloys", Tribol. Int., vol. 105, pp. 264-273, 2019. https://doi.org/10.1016/j.triboint.2016.09.034.

Hadad, M. and Sadeghi, B., "Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy", J. Clean. Prod., vol. 54, pp. 332-343, 2013. https://doi.org/10.1016/j.jclepro.2013.05.011.

Amorim, H. J. and Kunrath, A. O. N., "Study of the relationship between tool wear and surface finish in turning with carbide tool", Adv. Mat. Res., vol. 902, pp. 95-100, 2014. https://doi.org/10.4028/www.scientific.net/amr.902.95.

Benardos, P. G. and Vosniakos, G. -C., "Predicting surface roughness in machining: a review", Int. J. Mach. Tools Manuf., vol. 43, no. 8, pp. 833-844, 2003. https://doi.org/10.1016/S0890-6955(03)00059-2.

Diniz, A. E. and Micaroni, R., "Cutting conditions for finish turning process aiming: the use of dry cutting", Int. J. Mach. Tools Manuf., vol. 42, no. 8, pp. 899-904, 2002. https://doi.org/10.1016/S0890-6955(02)00028-7.

Published
2021-10-29
How to Cite
Espíndola, E., Amorim, H., & Souza, A. (2021). Effects of lubricooling conditions on machining forces and surface roughness in radial grooving. ITEGAM-JETIA, 7(31), 26-34. https://doi.org/10.5935/jetia.v7i31.772
Section
Articles