Behavior of biomaterials in relation to the conservation time and temperature: stability test of a bioproduct

Abstract

All products before reaching the consumer's table go through a battery of analyzes, in order to check if these materials resist the weather, temperature, climate changes, friction, including transportation. Whether they really support physical, chemical and biological factors and also with the idea of estimating the useful life of these materials. Biomaterials are no different, all bioproducts are also subjected to resistance tests to reach industry, or long-term production. Among the numerous possibilities that exist for the application of biomaterials, recently the bioactive ones encapsulated in polymeric nanoparticles of controlled action stand out with their several alternatives of application, among them as natural insecticides, aiming at the reduction of conventional pesticides, including fungicides, used in the activation and controlled release of the drug.Thus, this research aims to develop a formulation and verify its behavior as a function of time and temperature (25 °C), as well as the application of different preservatives. , [phenoxyethanol-2-methyl-2H-isothiazolin-3-one-NE), citric acid and thymol] in order to verify its influence on the stability of the formulations as a function of time. Among all tested formulations, the one containing the preservative NE was the only one approved in all parameters.

Downloads

Download data is not yet available.

References

L. R. Oroqui, M. Mori and P. Wongtschowsk, “Guia para a detetrminação da estabilidade de produtos químicos”, Química nova, vol. 36, no. 2, pp. 340-347, Feb. 2013. https://doi.org/10.1590/S0100-40422013000200023

A. R. Pires, A. C. K. Bierhalz and A. M. Moraes, “Biomateriais: tipos, aplicações e mercado”, Química nova, vol. 38, no. 7, pp. 957-971, May, 2015. http://dx.doi.org/10.5935/0100-4042.20150094

GHASEMISHAHRESTANI, Z. et al. “Tunable Synthesis of Gelatin Nanopartcles Employing Sophorolipid and Plant Extract, a Promising Drug Carrier”. World Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 7, pp. 1365-1381, 2015.

CALO, J. R. et. al. “Essential oils as antimicrobials in food systems–A review. Food Control”, vol., no. 54, pp. 111-119, 2015. https://doi.org/10.1016/j.foodcont.2014.12.040

KHALIL, Noha et. al. “Chemical composition and antimicrobial activity of essential oils from selected apiary fruits”. Future Journal of Pharmaceutical Sciences, vol. 4, no. 1, pp. 88-92, 2018.

CORREA, M. S. et. al. “Antimicrobial and antibiofilm activity of the essential oil from dried leaves of Eucalyptus staigeriana”. Arquivos do Instituto Biológico, vol. no. 86, pp. 1-8, 2019. https://doi.org/10.1590/1808-1657000202018

ASIAEI, E. O.; MOGHIMIPOUR, E.; FAKOOR, M. H.; “Evaluation of Antimicrobial Activity of Eucalyptus camaldulensis Essential Oil Against the Growth of Drug Resistant Bacteria”. Jundishapur Journal of Natural Pharmaceutical Products, vol. 13, no. 4, pp. 1-7, 2018. DOI: 10.5812/jjnpp.65050

MOSTAFA, A. A. et. al; “Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences”, vol. 25, no. 2, pp. 361-366, 2018. https://doi.org/10.1016/j.sjbs.2017.02.004

HAMED, S. M. et al. “Biosynthesis of silver and silver chloride nanoparticles by Parachlorella kessleri SAG 211-11 and evaluation of its nematicidal potential against the root-knot nematode; Meloidogyne incognita”. Australian Journal of Basic and Applied Sciences, vol. 10, no. 18, pp. 354-364, 2016.

FARIAS, P. K. S. et. al. “Antioxidant activity of essential oils from condiment plant sand their effect on lactic cultures and pathogenic bacteria”. Rural Science, vol. 49, no. 2, pp. 1-12, 2019. https://doi.org/10.1590/0103-8478cr20180140

WILLIAMS, M. A.; WYNER, S. N. “Antimicrobial Resistance: Facing the Rise of a Global Threat”. AJPH BOOK & MEDIA., vol. 109, no. 4, pp. 246, 2019. Doi: 10.2105 / AJPH.2019.304981

ESFANJANI, A. F.; JAFARI, S. M. “Nanoencapsulation of Phenolic Compounds and Antioxidants”. Nanoencapsulation of Food Bioactive Ingredients, Afshin Faridi Esfanjani1 and Seid Mahdi Jafari. vol. 1, no. 1, p. 63-101, 2017. DOI:10.1016/B978-0-12-809740-3.00002-7

DE JONG, W. H.; BORM, P. J. “Drug delivery and nanoparticles: applications and hazards”. Int J Nanomedicine, vol. 3, no. 2, pp. 133-49, 2008. Doi: 10.2147 / ijn.s596

KALEPU, S.; NEKKANTI, V. “Insoluble drug delivery strategies: Review of recent advances and business prospects”. Acta Pharm. Sin B, vol. 5, no. 5, pp. 442-453, 2015. https://doi.org/10.1016/j.apsb.2015.07.003

ANVISA. Guia de estabilidade de produtos cosméticos - séries temáticas. 1a

ed. Brasília: Agência Nacional de Vigilância Sanitária, 2004.

ANVISA. Guia de estabilidade de produtos cosméticos - séries temáticas. La ed. Brasília: Agência Nacional de Vigilância Sanitária, (2012).

ISAAC, V.L.B. et al. “Protocolo para ensaios físico-químicos de estabilidade de fitocosméticos”. Rev. Ciências Farmacêuticas Básica Aplicada, vol. 29, no. 1, pp. 81-96, 2008.

THOMPSON, JUDITH E. A prática farmacêutica na manipulação de medicamentos. Porto Alegre: Artmed, 2006.

STAUB et al. “Determinação da segurança biológica do xampu de cetoconazol: teste de irritação ocular e avaliação do potencial de citotoxicidade in vitro”. Brazilian Journal of Pharmaceutical Sciences. vol. 43, no. 2, pp. 301-307, 2007. https://doi.org/10.1590/S1516-93322007000200017

XING, F. et al. “Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins”. Journal of Applied Polymer Science, vol. 96, no. 6, pp. 2225–2229, 2005. ttps://doi.org/10.1002/app.21698

Apolinário, A. C. et al. Polimerossomos Versus Lipossomos: A Evolução Da “bala Mágica”. Química Nova, vol. 40, no. 7, pp. 810–817, 2017. https://doi.org/10.21577/0100-4042.20170054

SOUZA, P. M. S. et al. “Desenvolvimento de nanocápsulas de poli-ε-caprolactona contendo o herbicida atrazina”. Química Nova, vol. 35, no. 1, pp. 132–137, 2012. https://doi.org/10.1590/S0100-40422012000100024

BRITO. G. F. et al. “Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes”. Revista Eletrônica de Materiais e Processos, vol. 6, no.2, pp. 127-139, 2011.

HIGA, L. O. S. et al. “Evaluation of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to different acaricide formulations using samples from Brazilian properties”. Braz. J. Vet. Parasitol., Jaboticabal, vol. 25, no. 2, pp. 163-171, 2016. Doi: http://dx.doi.org/10.1590/S1984-29612016026

Published
2020-10-30
How to Cite
Arouche, J. (2020). Behavior of biomaterials in relation to the conservation time and temperature: stability test of a bioproduct. ITEGAM-JETIA, 6(25), 43-47. https://doi.org/10.5935/jetia.v6i25.702
Section
Articles