Adsorption kinetics of phenol from aqueous solution using sugarcane bagasse ash as low-cost adsorbent material

  • Yan Miguel Gallo Cienfuegos Center for Environmental Studies. Cienfuegos, Cuba http://orcid.org/0000-0001-8198-3608
  • Francisca Mónica Calero de Hoces Department of Chemical Engineering, Faculty of Sciences, University of Granada. Granada, Spain http://orcid.org/0000-0001-8029-8211
  • Iván Leandro Rodríguez Rico Faculty of Chemistry-Pharmacy, Central University "Marta Abreu" of Las Villas. Santa Clara, Cuba http://orcid.org/0000-0003-1295-5368
  • María Ángeles Martín Lara Department of Chemical Engineering, Faculty of Sciences, University of Granada. Granada, Spain http://orcid.org/0000-0001-9515-7307
  • Julio Omar Prieto García Faculty of Chemistry-Pharmacy, Central University "Marta Abreu" of Las Villas. Santa Clara, Cuba http://orcid.org/0000-0002-9279-4412

Abstract

The sugarcane bagasse fly ash was used to evaluate its adsorption behavior for phenol removal from aqueous solution at three different temperatures. Adsorption tests were performed in batch reactors and also in fixed-bed columns. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were applied to describe adsorption kinetics in batch systems. The pseudo-second model fitted appropriately the obtained experimental data at the three different temperatures tested. Thomas, Yoon-Nelson, Adams-Bohart and Dose-Response mathematical models were tested for describing phenol adsorption in dynamic systems (fixed bed columns). Experimental data were well-fitted to the non-linear form of all these models with high regression coefficients.

Downloads

Download data is not yet available.

References

Moyo M, Mutare E, Chigondo F, Nyamunda BC. Removal of phenol from aqueous solution by adsorption on yeast, Saccharomyces Cerevisiae. IJRRAS. 2012;11(3):486-94.

McKay, G., Dehghani, M.H., Alimohammadi, M., Sahu, J.N., Heibati, B., Mubarak, N.M., Mostofi, M., Yetilmezsoy, K., Albadarin, A.B., AlGhouti, M. High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubess: kinetics, adsorption, mechanism and optimization studies. J. Ind. Eng. Chem. 2015:35: 63-74. https://doi.org/10.1016/j.jiec.2015.12.010

Zeng, Z., Zou, H., Li, X., Arowo, M., Sun, B., Chen, J., Chu, G., Shao, L. Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chem. Eng. J. 2013:229: 404-411. https://10.1016/j.cej.2013.06.018

Alves, D.C.S., Gonçalves, J.O., Coseglio, B.B., Burgo, T.A.L., Dotto, G.L., Pinto, L.A.A., Cadaval Jr., T.R.S. Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. Journal of Environmental Chemical Engineering 2019:7(6):103460. https://doi.org/10.1016/j.jece.2019.103460

Mohanty K, Jha M, Meikap BC, Biswas MN. Preparation and Characterization of Activated Carbons from Terminalia Arjuna Nut with Zinc Chloride Activation for the Removal of Phenol from Wastewater. Indian Engineering Chemical Research. 2005;44:4128-38. https://doi.org/10.1021/ie050162+

Karunarathne HDSS, Amarasinghe BMWPK. Fixed Bed Adsorption Column Studies for the Removal of Aqueous Phenol from Activated Carbon Prepared from Sugarcane Bagasse. Energy Procedia. 2013;34(0):83-90. https://doi.org/10.1016/j.egypro.2013.06.736

Shou J, Qiu M. Adsorption kinetics of phenol in aqueous solution onto activated carbon from wheat straw lignin. Desalination and Water Treatment. 2014;1-6. https://doi.org/10.1080/19443994.2014.966328

Tao H.-C., Zhang H.-R., Li J.-B., Ding W.-Y. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresour. Technol. 2015;192:611-617. https://doi.org/10.1016/j.biortech.2015.06.006

Carrier M., Hardie A.G., Uras Ü, Görgens J., Knoetze J.H. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J. Anal. Appl. Pyrol. 2012;96:24-32. https://doi.org/10.1016/j.jaap.2012.02.016

Karri R.R., Sahu J.N., Meikap B.C. Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Industrial Crops and Products 2020;143: 111927. https://doi.org/10.1016/j.indcrop.2019.111927

Bahurudeen A., Santhanam M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem Concr Compos 2015;56:32-45. https://doi.org/10.1016/j.cemconcomp.2014.11.002

Deepika S., Anand G., Bahurudeen A., Manu Santhanam M. Construction products with sugarcane bagasse ash binder. J Mater Civil Eng 2017;29:04017189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001999

MolinFilho R.G.D., Longhi D.A., De Souza R.C.T., Ferrer M.M., Vanderlei .RD., Paraíso P.R., de Jorge L.M.M. Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction. Environ Dev Sustain. 2018 https://doi.org/10.1007/s10668-018-0127-x (in press) https://doi.org/10.1007/s10668-018-0127-x

Molin Filho, R.G.D., Colpini, L.M.S., Ferrer, M.M., Nagano, M.F., Rosso, J.M., Volnistem, E.A., Paraíso, P.R., Jorge, L.M.M. Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean Techn Environ Policy 2019; 21: 1687. https://doi.org/10.1007/s10098-019-01740-x

Rodríguez-Díaz JM, Prieto García JO, Bravo Sánchez LR, Carlos da Silva MG, Lins da Silva V, Arteaga-Pérez LE. Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent. Bioenerg Res. 2015. https://doi.org/10.1007/s12155-015-9646-6

Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006 Jan 5;272:89-104. https://doi.org/10.1016/j.colsurfa.2005.07.016

Abdel-Ghani NT, El-Chaghaby GA, Helal FS. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research. 2015 May;6(3):405-15. https://doi.org/10.1016/j.jare.2014.06.001

ASTM Designation: D 1783 - 01 Standard Test Methods for Phenolic Compounds in Water. 2001.

Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Ventenskapsaka demiens Handlingar. 1898;24(4):1-39.

Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry. 1999 Jul;34(5):451-65. https://doi.org/10.1016/S0032-9592(98)00112-5

Ho Y. S. and Mckay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research, 34, No. 3, 735-742 (2000). https://doi.org/10.1016/S0043-1354(99)00232-8

Weber, W. J. and Morris, J. C., Kinetic of adsorption on carbon from solution, Journal of Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, 89, 31-60 (1963).

Bohart, G.S., Adams, E.Q., 1920. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42, 523-544. https://doi.org/10.1021/ja01448a018

Thomas, H.C., 1944. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 66, 1664-666. https://doi.org/10.1021/ja01238a017

Yoon, Y.H., Nelson, J.H., 1984. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 45, 509-516. https://doi.org/10.1080/15298668491400197

Yan, G., Viraraghavan, T., Chen, M., 2001. A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol. 19, 25-43. https://doi.org/10.1260/0263617011493953

Moussout H, Ahlafi H, Aazza M, Maghat H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science. 2018 Jun 1;4(2):244-54. https://doi.org/10.1016/j.kijoms.2018.04.001

Subramanyam B, Das A. Study of the adsorption of phenol by two soils based on kinetic and isotherm modeling analyses. Desalination. 2009 Dec 25;249(3):914-21. https://doi.org/10.1016/j.desal.2009.05.020

Tan KL, Hameed BH. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers. 2017 May 1;74:25-48. https://doi.org/10.1016/j.jtice.2017.01.024

Moreno-Piraján JC, Giraldo L, Gonzalez JF. Adsorción de Fenol en soluciones acuosas empleando monolitos de carbón activado de cáscara de Coco: isotermas y cinéticas de adsorción. AFINIDAD. 2011;554:290-5.

Chen, S., Jin, L., Chen, X. The effect and prediction of temperature adsorption capability of coal/CH4. Procedia Engineering 2011;26:126-131. https://doi.org/10.1016/j.proeng.2011.11.2149

Ofomaja, A.E., Ho, Y.-S. Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresource Technology 2008; 99(13:5411-5417. https://doi.org/10.1016/j.biortech.2007.11.018

Al-Homaidan, A.A., Al-Houri, H.J., Al-Hazzani, A.A., Elgaaly, G., Moubayed, N.M.S. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry 2014;7(1):57-62. https://doi.org/10.1016/j.arabjc.2013.05.022

Preetha, B., Viruthagiri T. Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Separation and Purification Technology. 2007;57:126-33. https://doi.org/10.1016/j.seppur.2007.03.015

Fernández-González, R.; Martín-Lara, M.A.; Moreno, J.A.; Blázquez, G.; Calero, M. Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: scale-up and preparation of zinc-based biochar. Journal of Cleaner Production 2019;227:634-644. https://doi.org/10.1016/j.jclepro.2019.04.195

Published
2020-08-31
How to Cite
Gallo, Y., Hoces, F. M., Rodríguez Rico, I., Martín Lara, M., & García, J. (2020). Adsorption kinetics of phenol from aqueous solution using sugarcane bagasse ash as low-cost adsorbent material. ITEGAM-JETIA, 6(24), 21-26. https://doi.org/10.5935/jetia.v6i24.682
Section
Articles