Methodology for target forecasting of water level in hydroelectric plant reservoirs under conditions of low inflow

Abstract

The “El Niño” phenomenon brings periods of drought to northern South America that negatively impact the level of hydroelectric plant reservoirs, which could reduce their energy production. In order to avoid reaching the minimum operating level before the end of the drought period, this research proposes a methodology based on data science for the target forecast of the level of hydroelectric plant reservoirs in low flow conditions. The goal is that the minimum operating level of the reservoir be reached on the estimated end date of the drought period, that is, March 31, 2024. It is applied to the data of the reservoir of a hydroelectric plant located in the northwest of South America, for which three sequential forecast horizons are used, allowing the models to be evaluated as these periods pass, using the metrics: MAPE, RMSE, and MAE. To meet the goal, the predictive sampling method of the Prophet forecasting technique is used. The results indicate that the technique is a useful additional tool for the plant dispatcher, with values for the performance metrics during the third forecast horizon of 0.045%, 48 cm, and 62 cm, for the MAPE, the MAE, and the RMSE, respectively.

Downloads

Download data is not yet available.

References

Organización de las Naciones Unidas, «Programa Mundial de Alimentos,» 13 Mayo 2024. [En línea]. Available: https://docs.wfp.org/api/documents/WFP-0000157673/download/?_ga=2.39065891.1453367334.1715622910-1541892750.1715622909.

M. López, «¿Qué pasa con los fenómenos de El Niño y La Niña y cómo esto afecta a Venezuela?,» Efecto Cocuyo, 11 Febrero 2024.

H. Li, L. Zhang, Y. Zhang, Y. Yao, R. Wang y Y. Dai, «Water-Level Prediction Analysis for the Three Gorges Reservoir Area Based on a Hybrid Model of LSTM and Its Variants» MDPI Water, p. https://doi.org/10.3390/w16091227, 2024.

M. Sapitang, W. M. Ridwan, K. Faizal Kushiar, A. N. Ahmed y A. El-Shafie, «Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy» MDPI Sustainability, p. http://dx.doi.org/10.3390/su12156121, 2020.

H.-H. Tsao, Y.-G. Leu, L.-F. Chou y C.-Y. Tsao, «A Method of Multi-Stage Reservoir Water Level Forecasting Systems: A Case Study of Techi Hydropower in Taiwan» MDPI Energies, p. https://doi.org/10.3390/en14123461, 2021.

M. Tucci, «Hourly Water Level Forecasting in an Hydroelectric Basin Using Spatial Interpolation and Artificial Intelligence,» MDPI Sensors, p. https://doi.org/10.3390/s23010203, 2022.

J.-H. Yang, C.-H. Cheng y C.-P. Chan, «A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method» Computational Intelligence and Neuroscience - Hindawi, p. https://doi.org/10.1155/2017/8734214, 2017.

A. D. Nguyen, P. L. Nguyen, V. H. Vu, Q. V. Pham, V. H. Nguyen, M. H. Nguyen, T. H. Nguyen y K. Nguyen, «Accurate discharge and water level forecasting using ensemble learning with genetic algorithm and singular spectrum analysis based denoising» Scientific Reports, pp. https://doi.org/10.1038/s41598-022-22057-8, 2022.

S. J. Mohammed, S. L. Zubaidi, N. Al-Ansari, H. Mohammed Ridha y N. S. Saad Al-Bdairi, «Hybrid Technique to Improve the River Water Level Forecasting Using Artificial Neural Network Based Marine Predators Algorithm» Hindawi - Advances in Civil Engineering, p. https://doi.org/10.1155/2022/6955271, 2022.

S. C. Ibañez, C. V. G. Dajac, M. P. Liponhay, E. F. T. Legara, J. M. H. Esteban y C. P. Monterola, «Forecasting Reservoir Water Levels Using Deep Neural Networks: A Case Study of Angat Dam in the Philippines» MDPI Water, p. https://doi.org/10.3390/w14010034, 2022.

Facebook, «https://facebook.github.io/prophet/docs/quick_start.html#python-api» 4 Mayo 2024. [En línea]. Available: https://facebook.github.io/prophet/.

S. J. Taylor y B. Letham, «Forecasting at Scale,» Peer J, p. https://doi.org/10.7287/peerj.preprints.3190v2, 2017.

M. Peixeiro, Time Series Forecasting in Python, Shelter Island, NY: Manning Publications Co., 2022.

K. Sharma, R. Bhalla y G. Ganesan, «Time Series Forecasting Using FB-Prophet» de ACM-2022: Algorithms Computing and Mathematics Conference, Chennai, India, 2022.

E. Žunić, K. Korjenić, K. Hodžić y D. Đonko, «Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-World Data» International Journal of Computer Science & Information Technology, pp. 23-36. DOI: 10.5121/ijcsit.2020.12203, 2020.

Z. Z. Oo y S. Phyu, «Time Series Prediction Based on Facebook Prophet: A Case Study, Temperature Forecasting in Myintkyina» International Journal of Applied Mathematics, Electronics and Computers, pp. 263-267. https://doi.org/10.18100/ijamec.816894, 2020.

S. Makridakis, S. Wheelwright y R. Hyndman, Manual of Forecasting: Methods and Applications, 1997.

T. O. Hodson, «Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,» Geoscientific Model Development, pp. 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022, 2022.

M. Naser, «Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences» Architecture, Structures and Construction, pp. https://doi.org/10.1007/s44150-021-00015-8, 2021.

D. Cielen, A. D. B. Meysman y M. Ali, Introducing Data Science, Shelter Island, NY: Manning Publications Co., 2016.

W. McKinney, Python for Data Analysis, Sebastopol, CA: O’Reilly Media, Inc., 2018.

Published
2024-07-15
How to Cite
Yajure, C. (2024). Methodology for target forecasting of water level in hydroelectric plant reservoirs under conditions of low inflow. ITEGAM-JETIA, 10(48), 43-48. https://doi.org/10.5935/jetia.v10i48.1137
Section
Articles