Relevance and reliability of NO2 and NO monitoring in low-income countries using low-cost sensors

  • Olivier Schalm Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerpen, Belgium https://orcid.org/0000-0001-8705-7293
  • Rosa Amalia González-Rivero Universidad Central “Marta Abreu” de Las Villas”, Faculty of Chemistry, Road to Camajuaní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0002-6905-4379
  • Erik Hernández-Rodríguez Universidad Central “Marta Abreu” de Las Villas”, Faculty of Electrical Engineering., Road to Camajua-ní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0003-3947-5487
  • Mayra C. Morales-Pérez Universidad Central “Marta Abreu” de Las Villas”, Faculty of Chemistry, Road to Camajuaní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0001-7506-0145
  • Daniellys Alejo-Sánchez Universidad Central “Marta Abreu” de Las Villas”, Faculty of Chemistry, Road to Camajuaní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0001-9107-7190
  • Alain Martinez Universidad Central “Marta Abreu” de Las Villas”, Faculty of Electrical Engineering., Road to Camajua-ní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0002-6873-126X
  • Werner Jacobs Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerpen, Belgium https://orcid.org/0000-0002-2205-9711
  • Luis Hernández Universidad Central “Marta Abreu” de Las Villas”, Faculty of Electrical Engineering., Road to Camajua-ní Km 5.5, Santa Clara 54830, Villa Clara, Cuba https://orcid.org/0000-0003-0558-3690

Abstract

Assessing air quality's impact on human health involves monitoring pollutant concentrations such as NO2, O3, CO, SO2, and particulate matter. While high-income countries rely on expensive reference instruments, low-income nations face technological limitations. This study explores the potential of low-cost scientific devices as a viable solution for these regions. The research focuses on evaluating the reliability of low-cost NO2 sensors and consistency across five identical sensors. Calibration tests in controlled settings reveal a linear model with high coefficients of determination, contrasting with lower coefficients observed during field tests. Variability in intercepts and slopes is evident across time and campaign contexts. Time series analysis using low-cost NO2 sensors showed that many of the tall peaks atop a fluctuating baseline correlates with peaks identified by reference instruments. Additionally, NO gas sensors are also able to identify pollution peaks in monitoring campaigns. Therefore, such affordable sensors provide valuable insights into pollutant concentration trends, offering indicative magnitude information. However, improving calibration and reliability of these sensors necessitates further research.

Downloads

Download data is not yet available.

References

B. Krupińska et al., “Assessment of the air quality (NO2, SO2, O3 and particulate matter) in the Plantin-Moretus Museum/Print Room in Antwerp, Belgium, in different seasons of the year,” Microchemical Journal, vol. 102, pp. 49–53, May 2012, doi: 10.1016/j.microc.2011.11.008.

G. Carro, O. Schalm, W. Jacobs, and S. Demeyer, “Exploring actionable visualizations for environmental data: Air quality assessment of two Belgian locations,” Environ. Modell. Softw., vol. 147, p. 105230, Jan. 2022, doi: 10.1016/j.envsoft.2021.105230.

S. Paraschiv, N. Barbuta-Misu, and S. L. Paraschiv, “Influence of NO2, NO and meteorological conditions on the tropospheric O3 concentration at an industrial station,” Energy Reports, vol. 6, pp. 231–236, Dec. 2020, doi: 10.1016/j.egyr.2020.11.263.

J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, vol. 15, no. 4, pp. 287–338, Jan. 1989, doi: 10.1016/0360-1285(89)90017-8.

H. H. Schrenk and L. B. Berger, “Composition of Diesel Engine Exhaust Gas,” Am J Public Health Nations Health, vol. 31, no. 7, pp. 669–681, Jul. 1941, doi: 10.2105/AJPH.31.7.669.

B. Degraeuwe et al., “Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution – Scenario analysis for the city of Antwerp, Belgium,” Atmospheric Environment, vol. 126, pp. 218–224, Feb. 2016, doi: 10.1016/j.atmosenv.2015.11.042.

M. A. Elliott, G. J. Nebel, and F. G. Rounds, “The Composition of Exhaust Gases from Diesel, Gasoline and Propane Powered Motor Coaches,” Journal of the Air Pollution Control Association, vol. 5, no. 2, pp. 103–108, Aug. 1955, doi: 10.1080/00966665.1955.10467686.

Clean Air Technology Center, “Nitrogen Oxides (NOx), Why and How They are Controlled,” Environmental Protection Agency, EPA-456/F-99-006a, 1999.

C. E. Baukal Jr., Ed., Oxygen-Enhanced Combustion, Second Edition. in Industrial combustion series. New York: CRC Press, 2013.

J. C. Hilliard and R. W. Wheeler, “Nitrogen Dioxide in Engine Exhaust,” presented at the Passenger Car Meeting & Exposition, Feb. 1979, p. 790691. doi: 10.4271/790691.

Environmental Protection Agency, “Air Quality Index Reporting; Final rule,” Federal Register, vol. 64, no. 149, pp. 42530–42549, 1999.

U. Latza, S. Gerdes, and X. Baur, “Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006,” International Journal of Hygiene and Environmental Health, vol. 212, no. 3, pp. 271–287, May 2009, doi: 10.1016/j.ijheh.2008.06.003.

P. Collart, D. Dubourg, A. Levêque, N. B. Sierra, and Y. Coppieters, “Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium,” International Journal of Cardiology, vol. 255, pp. 231–236, Mar. 2018, doi: 10.1016/j.ijcard.2017.12.058.

A. Faustini, R. Rapp, and F. Forastiere, “Nitrogen dioxide and mortality: review and meta-analysis of long-term studies,” European Respiratory Journal, vol. 44, no. 3, pp. 744–753, Sep. 2014, doi: 10.1183/09031936.00114713.

F. Karagulian et al., “Review of the Performance of Low-Cost Sensors for Air Quality Monitoring,” Atmosphere, vol. 10, no. 9, p. 506, Aug. 2019, doi: 10.3390/atmos10090506.

M. Ródenas García et al., “Review of low-cost sensors for indoor air quality: Features and applications,” Applied Spectroscopy Reviews, pp. 1–33, Jun. 2022, doi: 10.1080/05704928.2022.2085734.

E. G. Snyder et al., “The Changing Paradigm of Air Pollution Monitoring,” Environ. Sci. Technol., vol. 47, no. 20, pp. 11369–11377, Oct. 2013, doi: 10.1021/es4022602.

L. Morawska et al., “Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?,” Environ. Int., vol. 116, pp. 286–299, Jul. 2018, doi: 10.1016/j.envint.2018.04.018.

G. Fanti et al., “Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review,” Sensors, vol. 21, no. 13, p. 4513, Jun. 2021, doi: 10.3390/s21134513.

G. Fanti et al., “Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment: A Rapid Review of the Literature,” Sensors, vol. 22, no. 13, p. 4841, Jun. 2022, doi: 10.3390/s22134841.

E. Hernandez-Rodriguez, D. Kairuz-Cabrera, A. Martinez, R. A. Gonzalez-Rivero, and O. Schalm, “Low-cost portable system for the estimation of air quality,” presented at the 19th Latin American Control Congress (LACC 2022), La Habana, Cuba, 2022.

E. Hernández-Rodríguez et al., “Reliability Testing of a Low-Cost, Multi-Purpose Arduino-Based Data Logger Deployed in Several Applications Such as Outdoor Air Quality, Human Activity, Motion, and Exhaust Gas Monitoring,” Sensors, vol. 23, no. 17, p. 7412, Aug. 2023, doi: 10.3390/s23177412.

A. Martinez, E. Hernandez-Rodriguez, L. Hernandez, O. Schalm, R. A. Gonzalez-Rivero, and D. Alejo-Sanchez, “Design of a low-cost system for the measurement of variables associated with air quality,” IEEE Embedded Syst. Lett., pp. 1–1, 2022, doi: 10.1109/LES.2022.3196543.

O. Schalm, G. Carro, B. Lazarov, W. Jacobs, and M. Stranger, “Reliability of Lower-Cost Sensors in the Analysis of Indoor Air Quality on Board Ships,” Atmosphere, vol. 13, no. 10, p. 1579, Sep. 2022, doi: 10.3390/atmos13101579.

O. Schalm, G. Carro, W. Jacobs, B. Lazarov, and M. Stranger, “The Inherent Instability of Environmental Parameters Governing Indoor Air Quality on Board Ships and the Use of Temporal Trends to Identify Pollution Sources,” Indoor Air, vol. 2023, pp. 1–19, Apr. 2023, doi: 10.1155/2023/7940661.

R. A. Gonzalez-Rivero, A. Álvarez-Cruz, D. Alejo-Sanchez, M. C. Morales-Perez, A. Martinez, and O. Schalm, “Calibration of a low-cost sensor for SO2 monitoring in a rural area of Cienfuegos,” presented at the VIII Simposio Internacional de Química (SIQ 2022), Cayo Santa Maria, Cuba, 2022.

B. Mijling, Q. Jiang, D. de Jonge, and S. Bocconi, “Field calibration of electrochemical NO2 sensors in a citizen science context,” Atmos. Meas. Tech., vol. 11, no. 3, pp. 1297–1312, Mar. 2018, doi: 10.5194/amt-11-1297-2018.

N. Karaoghlanian, B. Noureddine, N. Saliba, A. Shihadeh, and I. Lakkis, “Low cost air quality sensors ‘PurpleAir’ calibration and inter-calibration dataset in the context of Beirut, Lebanon,” Data Br., vol. 41, p. 108008, Apr. 2022, doi: 10.1016/j.dib.2022.108008.

P. Wei et al., “Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 59, Jan. 2018, doi: 10.3390/s18020059.

D. Wahlborg, M. Björling, and M. Mattsson, “Evaluation of field calibration methods and performance of AQMesh, a low-cost air quality monitor,” Environ Monit Assess, vol. 193, no. 5, p. 251, May 2021, doi: 10.1007/s10661-021-09033-x.

A. Bigi, M. Mueller, S. K. Grange, G. Ghermandi, and C. Hueglin, “Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application,” Atmos. Meas. Tech., vol. 11, no. 6, pp. 3717–3735, Jun. 2018, doi: 10.5194/amt-11-3717-2018.

T. Sayahi et al., “Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors,” Environmental Pollution, vol. 255, p. 113131, Dec. 2019, doi: 10.1016/j.envpol.2019.113131.

R. A. González Rivero et al., “A Low-Cost Calibration Method for Temperature, Relative Humidity, and Carbon Dioxide Sensors Used in Air Quality Monitoring Systems,” Atmosphere, vol. 14, no. 2, p. 191, Jan. 2023, doi: 10.3390/atmos14020191.

R. A. González Rivero et al., “Relevance and Reliability of Outdoor SO2 Monitoring in Low-Income Countries Using Low-Cost Sensors,” Atmosphere, vol. 14, no. 6, p. 912, May 2023, doi: 10.3390/atmos14060912.

“Belgian Interregional Environment Agency (IRCEL - CELINE) — English.” Accessed: May 18, 2022. [Online]. Available: https://www.irceline.be/en/front-page?set_language=en

Published
2024-07-01
How to Cite
Schalm, O., González-Rivero, R., Hernández-Rodríguez, E., Morales-Pérez, M., Alejo-Sánchez, D., Martinez, A., Jacobs, W., & Hernández, L. (2024). Relevance and reliability of NO2 and NO monitoring in low-income countries using low-cost sensors. ITEGAM-JETIA, 10(47), 27-33. https://doi.org/10.5935/jetia.v10i47.1041
Section
Articles