
Journal of Engineering and Technology for Industrial Applications 
 

 

Manaus, v.7 n.29, p. 13-24. May/Jun, 2021 

DOI: https://doi.org/10.5935/jetia.v7i29.755 
 

 

RESEARCH ARTICLE                                                                                                                                        OPEN ACCESS 

 

 

Journal homepage: www.itegam-jetia.org 

 

ISSN ONLINE: 2447-0228  

MINE SUBSIDENCE PREDICTION USING GENE EXPRESSION 

PROGRAMMING BASED ON MULTIVARIABLE SYMBOLIC REGRESSION 

Hadi Rasouli1, Kourosh Shahriar*2 and Sayyed Hasan Madani3 

1, 2, 3 Department of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran. 

1 http://orcid.org/0000-0002-1422-6225 , 2 http://orcid.org/0000-0002-8561-6984 , 3 http://orcid.org/0000-0002-6447-3646  

Email: hadi.rasouli@aut.ac.ir, *k.shahriar@aut.ac.ir, hmadani@aut.ac.ir 

ARTICLE INFO  ABSTRACT 

Article History 

Received: May 27th, 2021 

Accepted: June 18th, 2021 

Published: June 30th, 2021 
 

 
 

Accurate prediction of surface subsidence becomes a significant challenge for active 

industrial companies in coal mining fields due to the importance of the economic impacts 

of longwall mining-induced subsidence. This article explores a new variant of genetic 

programming, namely gene expression programming (GEP). The GEP-based method is 

utilized to present a new mathematical formula for subsidence prediction in longwall coal 

mining. The derived model includes both geometrical and geological variables. The data 

set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, 

NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction 

outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. 

The predictive ability of the GEP-based models, which captures the complex nonlinear 

effects of the critical factors on the magnitude of subsidence, resulted in a statistically 

significant improvement in predictive capacity compared to the aforementioned empirical 

methods. The sensitivity analysis results indicated that Panel width and cover thickness 

with 31% and 23% were the most influential parameters in the proposed model. Also, the 

extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, 

and 11% impact on the GEP proposed model, respectively. 

 

Keywords: 

Longwall mining, 

Maximum subsidence, 

Empirical model, 

Gene expression programming. 

 

 

 

Copyright ©2016 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed 
under the Creative Commons Attribution International License (CC BY 4.0). 

 

I. INTRODUCTION 

Longwall coal mining is the most common underground 

extraction method globally because of its relatively low cost, high 

safety, and efficiency in mining seams from depths. Longwall 

coal mining subsidence can affect groundwater resource and 

causes changes in permeability, porosity, and groundwater levels. 

Longwall-induced subsidence also has impacts on surface waters 

and associated ecosystems. Subsidence impacts can be divided 

into impacts on ecology, hydrology, geomorphology, and 

topography. Due to the importance of the mentioned effects, 

accurate prediction of surface subsidence due to longwall coal 

mining becomes a significant challenge in mining engineering. 

This importance includes environmental, economic, and social 

aspects.  

Surface subsidence prediction methods, in general, include 

four categories: Empirical, numerical, hybrid, and physical 

methods. Empirical methods are based on the back analysis of 

field measurements and are the most common subsidence 

prediction methods. Some examples of these methods are the 

National coal Board (NCB) method, Australian Department 

Mineral Resource (DMR) method, Australian Coal Research 

Program (ACARP), influence profile method and Incremental 

Profile Method (IPM) [1-5].  

Numerical methods use various mathematical functions to 

study ground movements in and around the longwall panels. 

Some examples of these methods include: cutting cantilever 

beam, key strata, and Voussoir beam structure methods [6-8].  

Hybrid methods involve various mixtures of back-analysis 

of field observation data and using numerical and intelligent 

techniques. The fourth category is physical methods, which 

provide visual means but have little predictive value. In this 

study, Symbolic regression (SR)-based Gene Expression 

Programming (GEP) is used for subsidence prediction in longwall 
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coal mines [9-10]. SR is a cluster of regression analysis methods 

to find and build the best model for accuracy and simplicity. This 

method requires many input and output data points to find an 

accurate regression. Similar to the genetic algorithm, this method 

includes both simple, linear chromosomes of fixed length. Like 

the parse trees of Genetic Programming (GP), GEP uses ramified 

structures of different sizes and shapes. The final output of the 

GEP model is a series of linear chromosomes of fixed length. In 

GEP, the genotype and phenotype are separated, and the model 

can benefit from all the evolutionary advantages. The main 

objective of this study is to develop a new mathematical model 

for predicting the maximum subsidence of longwall panels using 

the GEP method.  

Among the various geometrical and geological factors that 

influence mine subsidence, five parameters include: panel width 

(W), extracted seam thickness (T), Cover thickness (H), the 

thickness of overburden thick layer (t), and the location of the 

massive unit above workings (Y) are used in the proposed model. 

Figure 1 shows the schematic of the longwall mining method 

[11].  

The following sections of the paper are organized as 

follows: Section 2 gives brief literature surveys on the subsidence 

prediction methods. The most applicable empirical methods in 

Australia are discussed in more detail. In section 3, the method of 

research is explained. Discussion and results are provided in 

section 4. Finally, the conclusion is given in section 5. 

 
Figure 1: Schematic of longwall coal mining. 

Source: [11]. 

 

II. LITURATURE SURVEY 

The accuracy of mine subsidence prediction methods 

should never be taken for granted. The magnitude of subsidence 

depends on the input parameters of the specific site conditions. 

Empirical methods are based on the actual field measurements. 

These approaches predict subsidence based on parameter 

relationships developed from field monitoring and experience [1-

4, 12-14]. The most widely used methods for predicting longwall 

mining-induced subsidence in Australia are described in detail.  

National Coal Board in the UK proposed a subsidence 

prediction method during the 1960s [1]. NCB method results are 

based on the UK geology and do not predict subsidence 

magnitude accurately for other countries. During the 80s and 90s, 

the NCB method had been used in Australia. DMR, ACARP, and 

IPM methods have now replaced them. The NCB method gave 

good predictions when used in British mining conditions, but it 

provided much higher values than measured data in Australia. 

The difference in calculated subsidence magnitude is because the 

rock mechanics, geological conditions, and overlying strata of the 

extracted coal seam in British coalfields are different from those 

in Australia. The strata rocks in Britain are generally less strong 

and competent. Therefore, for a given seam thickness, the 

calculated maximum subsidence by the NCB method is greater 

than it would typically be for the Australian mining conditions. 

Figure 2 shows the NCB curves for subsidence prediction in 

different w/h ratios for caving and solid stowing cases. 

 

 
Figure 2: NCB subsidence prediction method. 

Source: [1]. 
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As a result of extensive research, NEW South Wales 

Department of Mineral Resources (DMR) introduced a new 

subsidence prediction model for Australian conditions [2]. DMR 

model is a modified form of the NCB method for subsidence 

prediction. The graphical charts of the DMR proposed model 

were presented in three handbooks for major coalfields of NSW. 

This method is also applicable for greenfield sites and where a 

worst-case scenario prediction is required. The data inputs to the 

DMR method are limited to the panel geometric variables include 

panel width, cover depth, and seam thickness. Like other 

empirical models, the DMR model is only suitable for subsidence 

prediction when geometrical variables are within the ranges that 

the model has been developed. In model development, The 

database from over fifty Newcastle and southern were used to 

model construction. As Figure 3 shows, this model is applicable 

when the panel (W/H) ratio is 0.2 to 2.0 and covers depth ranges 

between 70 m and 350 m. In recent years, the DMR method has 

mostly been superseded by the incremental profile method. 

 

 
Figure 3: DMR subsidence prediction method. 

Source: [2]. 

 

In 2003, the Australian Coal Research Program introduced 

a new model for subsidence prediction in Newcastle Coalfields 

[3]. ACARP model was developed based on the LAMODEL 

program and provided a reliable subsidence prediction model 

using both geometrical and geological information of longwall 

panels (See Figure 6). 

The main focus was on the behavior of massive sandstone 

and conglomerate strata above the extracted coal seam. The 

massive geological units are classified into high, moderate, and 

low SRP. In the next step, according to obtained SRP factor and 

the thickness of the massive unit (Figure 4), maximum subsidence 

magnitude can be calculated from Figure 7. Upper and Lower 

bound prediction lines of this method for depths between 50m to 

150 m is presented in Figure 7. For others depth diagrams are 

presented in [3]. Geometrically, the subsidence above a series of 

longwalls is strongly influenced by the panel width, the cover 

thickness, and the extraction height. Regarding geology, massive 

strata units above longwall panels result in reduced subsidence 

compared to longwall panels with similar geometry but thinner 

strata units. 

 

𝑆𝑚𝑎𝑥 = √12(1 − ν2)/t) (γH/E) (W2/4)               (1) 

 

Where are:  

ν – Poisson ratio (dimensionless), 

t – Overburden thickness (m), 

γ – Unit weight (N/𝑚3), 

H – Cover thickness (m), 

E –Young Modulus (N/𝑚2), 

W– Panel width (m). 

 

 
Figure 4: ACARP empirical model for predicting SRP above 

panels with cover thicknesses between 50 and 150m. 

Source: [3]. 

 

IPM method was proposed to predict subsidence in the 

Newcastle Coalfield [4]. To predict subsidence with IPM requires 

panel width (W) and the thickness of cover (H). Figure 5 shows 

the details of subsidence prediction by the IPM method. 

 

 
Figure 5: Subsidence profiles obtained using the incremental 

profile method. 

Source: [4]. 
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Empirical methods require extensive field measurement 

data to develop relationships applied to the mine subsidence 

prediction. However, when there are few case histories, an 

alternative approach is needed. 

Numerical modeling methods simulate the geological and 

geotechnical conditions of the mining site to predict the  

impact of various mining scenarios. Numerical modeling 

methods are often used when the mining method, strata 

conditions, and coal seam thickness differ from situations used in 

previously presented empirical methods. A conceptual model of 

the geotechnical conditions and the proposed mining methods 

must be developed before using numerical modeling. Computer 

modeling to simulate subsidence has been undertaken with 

various levels of success over the past years [15-17]. 

Developments in machine learning fields have created 

several new computer-aided data mining and hybrid approaches 

applicable for prediction problems. Artificial Neural Networks 

(ANN) have extensively been used to develop the nonlinear 

relationships between input parameters in mining and other 

geotechnical engineering systems [18-21]. A genetic algorithm 

(GA) is a robust stochastic approach for predicting various civil 

and mining problems. In contrast with ANNs and GA, the 

application of GP and its different variants, such as GEP in 

mining engineering, is entirely new and original. Various studies 

have also shown that GP, Linear Genetic programming (LGP), 

Multi-Expression Programming (MEP), and Gene Expression 

Programming (GEP) have advantages over ANNs in dealing with 

prediction problems [22-23]. 

The GEP and GP-based methods have useful applications 

where other standard modeling methods are complicated or 

detailed information for model construction don't exist [24-32]. 

 

III. METHODOLOGY 

Genetic programming (GP) is one of the machine learning 

techniques that searches a program space. Gene Expression 

Programming (GEP) is an advanced form of GP technique. 

Ferreira presented gene expression programming [9, 10]. 

Traditional regression analyses, in some cases, have significant 

uncertainties. The regression analysis has a considerable 

impediment relating to complex processes. Besides that, the 

application of regression methods in model construction is the 

normality assumption of residuals. The capability of classical 

regression methods is also limited for the formulation of 

complexity, idealization of material behavior, and excessive 

empirical Parameters. The Gene ecpresion programming approach 

overcomes the constraints of various subsidence prediction 

methods that were previously presented. Contrary to many other 

soft computing tools, GEP provides prediction equations that can 

readily be used for subsidence prediction in longwall coal mines. 

The constitutive models derived using these methods can be 

incorporated into the different models. They may also be used to 

quickly check on other empirical models such as NCB, DMR, 

ACARP, and IPM. Similar to the genetic algorithm, this method 

includes both the simple, linear chromosomes of fixed length. 

Like the parse trees of GP uses ramified structures of 

different sizes and shapes. The final output of the GEP model is a 

series of linear chromosomes of fixed length. In GEP, the 

genotype and phenotype are separated, and the model can benefit 

from all the evolutionary advantages. Ferreira book includes a 

basic algorithm of GEP and its implementation details. GEP 

method consists of five essential components: function set, 

terminal set, fitness function, control parameters, and termination 

points. GEP uses a fixed length of character strings to represent 

solutions to the problems, expressed as parse trees of different 

sizes and shapes. These trees are called GEP expression trees 

(ETs). One advantage of the GEP technique is that genetic 

diversity is highly simplified as genetic operators work at the 

chromosome level. Another advantage of GEP is its unique, 

multi-genic nature which allows the evolution of more complex 

programs composed of several subprograms. The fundamental of 

the GEP is schematically represented in Figure 8. The algorithm 

uses the following steps until a termination condition is achieved: 

(1) Randomly generation of the fixed-length chromosome 

of each individual for the initial population;  

(2) Chromosome expression as ET and fitness evaluation 

of individuals; 

(3) Selection of the best individuals according to the 

fitness function; 

(4) Repeating the previous stages to define several 

generations or until an acceptable solution is found.   Standard 

fitness functions that are used in GEP model evaluation are as 

follows: 

 

III.1 NUMBER OF HITS 

When the precision is chosen for the evaluated models, the 

number of hits fitness function favors other fitness functions in 

evaluating the goodness of constructed model. The error can be 

either absolute or relative. The fitness F (ij) of an individual 

program i for fitness case j is evaluated by Equation 2 [9]: 

 

 If  𝐸(ij) ≤ 𝑝, then  𝐹(ij) = 1;     else   𝑓(ij) = 0       (2) 

 

Where are: 

E (ij) – is the error of an individual program i for fitness 

case j, 

𝑝 –is the precision, 

F (ij) – is the fitness of an individual program i for case j. 

Equation 3 and Equation 4 show the error of an individual 

program in the cases in which errors are absolute and relatives, 

respectively [8]: 

 

𝐸(𝑖𝑗) = |𝑃(𝑖𝑗) − 𝑇𝑗|                                     (3) 

 

𝐸(𝑖𝑗) = |
𝑃(𝑖𝑗) − 𝑇𝑗

𝑇𝑗

⋅ 100|                             (4) 

 

Where are: 

𝑃(𝑖𝑗) – Predicted value by the program 𝑖 for the case 𝑗̇, 

𝑇𝑗– Target value for the case j. 

𝑓 max = 𝑛, can occur when 𝑛 is the number of fitness 

cases. 

 

III.2 MEAN SQUARE ERROR (MSE) 

The mean squared error expresses how close a regression 

line is to a set of points. It does this by taking the distances from 

the points to the regression line (these distances are the errors) 

and squaring them. The squaring is necessary to remove any 

negative signs. E (ij) is the error of an individual program i for 

fitness case j. Equation 5 and Equation 6 show the error of an 

individual program in instances in which errors are absolute and 

relatives: 
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    𝐸𝑖 =
1

𝑛
∑(

𝑛

𝑗=1

𝑃(𝑖𝑗) − 𝑇𝑗)2                           (5) 

Where are: 

 𝑛 – Number of fitness cases,   

 𝐸𝑖  – Absolute error for the program i, 

 𝑃(𝑖𝑗) – Predicted value by the program i for the case j,̇ 

 𝑇𝑗– Target value for the case j. 

𝐸𝑖 =
1

𝑛
∑(

𝑛

𝑗=1

𝑃(𝑖𝑗) − 𝑇𝑗

𝑇𝑗

)2                           (6) 

Where are:  
𝐸𝑖– is the relative error for the program i. 

Other parameters are previously stated in Equation 5. 

Thus, for a perfect fitness, 𝑃(𝑖𝑗) = 𝑇𝑗 , and 𝐸𝑖𝑗 = 0. 

To evaluate the fitness  𝑓𝑖 of the program 𝑖, the following. 

 

 
Figure 6: Key parameters of ACARP subsidence prediction method. 

Source [3]. 

 

 
Figure 7: Empirical model for predicting subsidence above panels (cover thicknesses 50 m to 150 m and low to high SRP zones).  

Source [3]. 

 

Equation can be used [9]: 

 

𝑓𝑖 = 1000 ⋅
1

1 + 𝐸𝑖

                              (7) 

Where are: 

𝑓𝑖–Total fitness of the program i, 

𝐸𝑖– Total error of the program i. 

𝑓𝑖  ranging from 0 to 1000, with 1000 corresponding to the 

ideal conditions. 
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III.3 R-SQUARE 

R-square is the square of the Pearson product-moment 

correlation coefficient, which can be calculated as Equation 8 [9]: 

 

𝑅𝑖 =
𝑛 ∑ (𝑇𝑗𝑃(𝑖𝑗)) − (∑ 𝑇𝑗

𝑛
𝑗=1 )(∑ 𝑃(𝑖𝑗)

𝑛
𝑗=1 )𝑛

𝑗=1

√[𝑛 ∑ 𝑇𝑗
2 − (∑ 𝑇𝑖

𝑛
𝑗=1 )

2𝑛
𝑗=1 ] [𝑛 ∑ 𝑃(𝑖𝑗)

2𝑛
𝑗=1 − (∑ 𝑃(𝑖𝑗)

𝑛
𝑗=1 )

2
]

   (8) 

 

Where are: 

𝑅𝑖– Pearson correlation coefficient. 

Other parameters are stated in Equation 5. 

 

The fitness of an individual program is a function of the 

correlation coefficient and is defined by the Equation 9 [9]:  

 

𝑓𝑖 = 1000 ⋅ 𝑅𝑖
2                                    (9) 

 
𝑓𝑖 ranges from 0 to 1000, with 1000 corresponding to the 

ideal fitness. 

d. Precision and Selection Range. 

 

The fitness f_i of program i is expressed by Equation 10 

and Equation 11 for absolute and relative errors [9]: 

 

 𝑓𝑖 = ∑(

𝑛

𝑗=1

𝑅 − |𝑃(𝑖𝑗) − 𝑇𝑗|)                       (10) 

 

𝑓𝑖 = ∑(

𝑛

𝑗=1

𝑅 − |
𝑃(𝑖𝑗) − 𝑇𝑗

𝑇𝑗

⋅ 100|)                   (11) 

 

Where are: 

R – selection range 

𝑃(𝑖𝑗) , and 𝑇𝑗 are the parameters previously defined. 

Thus, for a perfect fit, 𝑃(𝑖𝑗) = 𝑇𝑗 for all cases 𝑎𝑛𝑑 𝑓𝑖 = 𝑅. 

 

In the second step, the terminals and functions are 

determined. The third step involves selecting chromosomal 

structures such as head and tail size and the number of genes. and 

finally, in the fourth step, the linking function is defined, and 

genetic operators are determined. Detailed descriptions of stages 2 

to 4 are mentioned in [9]. 

 

IV. RESULTS AND DISCUSSION 

Data from Ulan mines have been used in the modeling 

process [33-38]. Ulan coal mines are located in New South 

Wales, Australia, and are very similar in geological and 

geotechnical characteristics. The collected empirical data include 

37 longwall panels and 119 measured subsidence from them. 

Most of the model data, about 79% of them were related to old 

Ulan mine. This section describes Ulan coal mines characteristics. 

Ulan Coal Mine Complex (UCMC) is situated in the central west 

of New South Wales. It is located near the village of Ulan, 

approximately 38 kilometers north-northeast of Mudgee and 19 

kilometers northeast of Gulgong. Coal mining started in the Ulan 

area in the 1920s, consisting of Old Ulan, No.3 underground 

mines, Ulan West areas, and open-cut mining. Figure 9 shows the 

locality plan of the complex [38]. 

 

 
Figure 8: The flowchart of a gene expression algorithm. 

Source: [9]. 

 

 
Figure 9: locality of the Ulan coal mines complex. 

Source: [38]. 
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The coal seams in the region range in thickness from 0.4 to 

1o meters, and the Ulan coal seam is the thickest among them. 

Except for the Ulan, other seams are uneconomical due to high 

ash content. Massive Triassic sandstone, siltstone, and Narrabeen 

conglomerate overlie the Permian Coal Measures. Figure 10 

shows Ulan coal mine longwalls and their positions [33]. 

The research aims to develop a new mathematical model 

for predicting the maximum subsidence of longwall panels using 

the GEP method. The GEP model uses the five influencing input 

parameters as Equation 12: 
 

 Smax =  F (W, T, H, t, Y)                       (12) 

 

Where are: 

W– Panel width (m), 

T– Extracted seam thickness (m), 

H – Cover thickness (m), 

t – Thickness of overburden thick layer (m), 

Y– Massive unit location above workings (m). 

 

The fitness function for model development is the mean 

square error (MSE). The mean squared error Ei of an individual 

program i is evaluated using Equation 5 and Equation 6. For 

assessing the fitness fi of individual program i, Equation 6 is 

used. Various parameters used in the GEP model are shown in 

Table 1. 

 

Table 1: Experiment parameters of the GEP model. 

Parameters Values 

Fitness Function Equation 6 

Population Size 30 

Number of Generation 1000 

Head Length 5 

Number of Genes 3 

Chromosome Length 33 

Function Set +, -, /, *, tan, inv 

Terminal Set c0, …, c3 

Link Function + 

Mutation Rate 0.004 

Inversion Rate 0.01 

IS Transposition 

Rate 
0.01 

RIS Transposition Rate 0.01 

One-Point Recombination 0.3 

Two-Point Recombination 0.3 

Gene Recombination 0.1 

Random Numbers [-100,100] 

Source: Authors, (2021). 

 

Ulan longwall panels have all been carefully scheduled 

according to the timetable provided in Table 2. 

 

Table 2: Extraction timetable of Ulan longwall panels. 

Long wall Start Finish Longwall Start Finish 

LW1 07-12-86 30-11-87 W4 01-09-13 02-05-14 

LW2 20-12-87 15-10-88 LW28 03-07-14 05-03-15 

LW3 30-11-88 31-08-89 W5 06-05-15 01-03-16 

LW4 05-12-89 15-09-90 LW29 02-05-16 01-11-16 

LW5 15-10-90 04-01-92 W6 02-01-17 01-10-17 

A 15-05-92 30-08-92 LW30 02-12-17 04-04-18 

B 05-10-92 28-02-93 W7 05-06-18 07-04-19 

LW6 15-03-93 30-07-93 LW31 08-06-19 01-02-20 

LW7 07-10-93 30-05-94 W8 09-04-20 07-11-20 

LW8 15-06-94 15-02-95 LW32 08-01-21 09-07-21 

LW9 22-03-95 26-10-95 W9 09-09-21 10-03-22 

LW10 05-12-95 23-08-96 W10 11-05-22 08-10-22 

LW11 25-10-96 26-11-97 LW33 09-12-22 08-02-23 

LW12 23-10-97 01-07-98 W11 11-04-23 11-05-23 

LW13 29-07-98 21-04-99 Ulan West 

LW14 21-07-99 01-04-00 UW1 02-01-12 01-01-14 

LW15 31-05-00 22-02-01 UW2 01-03-14 01-03-15 

LW16 20-03-01 08-10-01 UW3 01-05-15 01-05-16 

LW17 06-11-01 21-07-02 UW4 01-07-16 01-09-17 

LW18a 26-07-02 23-02-03 UW5 01-11-17 01-11-18 

LW19 11-04-03 03-11-03 UW6 10-01-19 12-05-20 

LW20a 10-12-03 10-12-03 UW7 13-07-20 10-10-21 

LW21 27-10-04 27-10-04 UW8 10-12-21 12-06-23 

LW22 23-09-05 23-09-05 UW9 11-08-23 10-01-25 

LW23 25-10-06 11-09-07 UW10 12-03-25 12-04-26 

LW24 05-11-07 20-03-08 UW11 12-06-26 10-08-28 

W1 26-05-08 12-02-09 North 1 

LW25 01-04-09 01-11-09 LW-C 01-04-14 08-09-14 

W2 01-01-10 01-11-10 LW-D 01-04-11 08-09-11 

LW26 01-11-11 01-0911 LW-E 01-04-12 08-09-12 

W3 01-11-11 03-08-12 LW-F 01-04-13 08-09-13 

LW27 01-11-12 01-07-13 LW-G 01-04-15 08-09-15 

Source: Authors, (2021). 
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For example, Table 3 shows a part of the measured 

subsidence data of old Ulan coal mine panels. 

 

Table 3: Measured subsidence of old Ulan coal mine panels. 

LW 

Panel 

Measured 

Subsidence (m) 
LW Panel 

Measured 

Subsidence (m) 

A 1.2 11C 1.4 

B 0.93 11X 1.4 

1 1.5 12D 1.3 

5 1.0 13D 1.3 

6 0.13 14D 1.1 

7 1.0 15D 0.96 

8 1.0 16D 1.1 

9 1.2 17D 1.2 

10 1.3 18E 1.1 

11 1.4 19E 1.2 

Source: [39]. 

 

Table 4 expresses the Performance results of the proposed 

GEP model in its different stages. Table 6 suggests the final GEP 

model equations and sub-trees in details. 

 

 

 

 

 

 

 

Table 4: Proposed GEP model performance in different stages. 

Model Experiment vs Prediction 

Stage R MAD RMSE 

Learning 0.904 0.191 0.202 

Test 0.892 0.184 0.197 

Validation 0.881 0.181 0.192 

Source: Authors, (2021). 

 

Table 5 and Figure 10 shows the importance of each 

parameter in the proposed GEP model. Panel width parameter 

with 31%, cover thickness with 23%, extracted seam thickness 

with 19%, thick layer location with 16%, and thick layer 

thickness with 11% impact the proposed model. 

 

Table 5: Sensivity analysis results of the proposed GEP model. 

Parameter Unit Symbol 

Importance 

in the GEP 

model (%) 

Panel width (W) m d0 31% 

Cover thickness (H) m d1 23% 

Extracted seam thickness 

(T) 
m d2 19% 

Thickness of overburden 

thick layer (t) 
m d4 11% 

Massive unit location 

above workings (Y) 
m d3 16% 

Source: Authors, (2021). 

 

Table 6: Sub-equations and sub-trees of the proposed GEP model results. 

Equations Expression Trees (Ets) 

Tan [tan(
c9 − d1

(d0 ∗ d2) −  (d3 ∗ d4)
)]        (13) 

 

Where are: 

d0 – is the Panel width (m), 

d1 – is the cover thickness (m), 

d2 – is the thickness of extracted seam (m), 

d3 – is the thickness of overburden thick layer (m), 

d4 – is the massive unit location above workings (m), 

c0 = 11.2418. 
 

[(d3 − d2) −
d1

c6 ∗ d3
] + 𝑒

𝑐5
𝑑4             (14) 

 

Where are: 

d1 – is the cover thickness (m), 

d2 – is the thickness of extracted         seam (m), 

d3 – is the thickness of overburden thick layer (m), 

d4 – is the massive unit location above workings (m), 

c0 = -1.9457 , 

c1 = -8.8704.  

Tan(c0 ∗ d1)] ∗ [(c2 ∗ c4) − c1] + d3]    (16) 
 

Where are: 

d1 – is the cover thickness (m), 

d3 – is the thickness of overburden thick layer (m), 

c0 = 144.932 , 

c1= 1.6201, 

c2 = 9.0104 , 

c3 = -3.7042. 
 

Source: Authors, (2021). 
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Table 7:  Summary of the most applicable empirical methods for prediction of mine subsidence in Australia. 

Method Use in Australia Main advantages Main disadvantages 

NCB 
Less commonly used today and is used more as 

a rule of thumb to compare with other methods 

Fast, low cost, requires fewer input 

parameters 

The accuracy of the method 

when used in Australia is low 

DMR 

Widely used before 90s. It is used as an 

auxiliary method along with other subsidence 

prediction methods 

Fast, low cost, requires fewer input 

parameters 

Doesn’t take into account the 

presence of the overlying 

thick strata 

ACARP Relatively common method 
Takes into account the presence of 

the overlying thick strata 

Its application limited to 

Newcastle, New South Wales 

IPM 
The most common subsidence prediction 

method in Australia 

It can be implemented quickly and 

cheaply relative to numerical 

modeling methods 

It requires more input data 

than NCB and DMR methods 

Source: Authors, (2021). 

 

Table 8: Subsidence prediction results in the most applicable empirical methods for prediction of mine subsidence in Australia. 

Mine W H T t Y NCB DMR ACARP IPM GEP 
Measured 

Subsidence 

Ulan West 261 75 3.2 10 15 2.88 1.68 1.72 1.68 1.72 1.91 

Ulan West 261 75 3.2 15 20 2.88 1.68 1.72 1.68 1.91 1.82 

Ulan West 315 140 3.2 20 65 2.88 1.68 1.22 1.42 1.48 1.36 

Ulan West 315 215 3.2 35 30 2.88 1.6 1.47 1.42 1.13 0.97 

Old Ulan 216 160 2.54 15 13 2.27 1.19 1.17 1.29 1.55 1.37 

Old Ulan 216 162 2.52 18 19 2.27 1.19 1.23 1.27 1.49 1.36 

Old Ulan 216 167 2.54 20 23 2.29 1.17 1.27 1.25 1.44 1.35 

Old Ulan 198 169 2.54 30 55 2.23 1.14 1.07 1.14 0.84 0.64 

Source: Authors, (2021). 

 

For validation purposes, the performance of the proposed 

GEP model and other maximum subsidence prediction methods 

reviewed in this research are compared with measured 

subsidence. The DMR, ACARP, and IPM methods had been 

proposed based on the database from NSW. Ulan coal mine 

complex has the same geological and geotechnical similarities 

with those of mentioned methods. Although the NCB method is 

proposed for UK mines, it has been used as a rule of thumb in 

comparing results of other empirical methods. 

Table 7 provides a summary of the main empirical and 

proposed GEP models. Validation results of the proposed GEP 

model vs. other methods are provided in Table 8. 

 

 

 

 
Figure 10: Sensitivity analysis results of the proposed GEP model. 

Source: Authors, (2021). 
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Figure 11: Prediction methods results vs. measured data. 

Source: Authors, (2021). 

 

As shown in Figure 11, the NCB method is based on the 

UK longwall mines. comparing the results of NCB method with 

the measured data is unsatisfactory. Compared to the previous 

methods presented with the measured data, the IPM has a minor 

error and higher accuracy. The IPM method has been proposed by 

Mine Subsidence Engineers Consultant into proprietary software 

and is available at a cost. Compared with IPM, the proposed GEP 

method has higher accuracy and requires less time and cost. 

Figure 12 and Table 9 suggest the statistics between measured 

subsidence and subsidence resulted from various prediction 

methods. 

 

Table 9: Statistics results of the proposed GEP model vs. other 

methods. 

Prediction 

method 

Experiment vs Prediction 

R 𝑹𝟐 MAD RMSE 

NCB 0.46 0.21 1.26 1.28 

DMR 0.72 0.52 0.26 0.34 

ACARP 0.74 0.54 0.22 0.27 

IPM 0.88 0.76 0.19 0.24 

GEP 0.88 0.77 0.18 0.19 

Source: Authors, (2021). 

 

 
Figure 12: Squared correlation coefficients of measured subsidence and other prediction methods. 

Source: Authors, (2021). 
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V. CONCLUSION 

The present research introduced a new gene expression 

programming model based on multivariable symbolic regression 

for subsidence prediction in Ulan longwall mines. GEP can use 

linear, nonlinear functions and constant numbers without prior 

information about the final model. The proposed model was 

carried out through measured data as training inputs. Finally, a 

new mathematical formula for subsidence prediction was 

proposed. The maximum vertical subsidence was modeled in 

various affecting parameters (W, H, T, t, y). The proposed model 

was constructed using measured subsidence data from Ulan coal 

mines. By comparing the results of the proposed GEP model with 

NCB, DMR, ACARP, and IPM methods, it was observed that the 

GEP-based model was accurate enough and had the potential to 

be used in mines with similar geological and geotechnical 

conditions. The sensitivity analysis results indicated that Panel 

width with a 31% effect was the most influential parameter in the 

proposed model. Also, the impact of panel depth, extracted seam 

thickness, location, and thickness of the thick overburden layer 

were 23%, 19%, 16%, and 11%, respectively. The proposed 

model is expected to help predict subsidence where geological 

and geotechnical conditions are similar to that of the Ulan coal 

mines. Future research can include some new parameters 

individually or mixed to present new optimized subsidence 

prediction models. 
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