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Fuzzy logic is a subfield of Artificial Intelligence that allows human knowledge to be 

expressed naturally, through linguistic variables and values, and an inference process very 

similar to the one it uses daily. The present research uses expert criteria to design and 

evaluate a model based on a fuzzy system to predict the irrigation time of the protected crop 

of cucumber (Cucumis sativus L.). The variables temperature, soil moisture and lighting are 

used for the model construction, which is coupled to an existing IoT technology in the 

various crops company "Valle del Yabú", serving as a support system for decision making. 

The prototype is created and simulated in MATLAB, then transferred to a Raspberry Pi 4 

Model B, using the Python programming language. Tests using a database collected during 

one crop cycle show a 10.07% reduction in water usage compared to the standard irrigation 

currently implemented by the company. 
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I. INTRODUCTION 

 

Agriculture is the main food source in all world countries 

[1]. The global demand for food means greater pressure on water 

resources [2], and agriculture is by far the largest consumer of 

water, accounting for around 70 % of all water withdrawals for 

irrigation, with a figure that can be as high as 95 % in some 

developing countries [3].  

The agriculture industry is becoming more data-centric and 

requires more advanced and accurate information and technologies 

[4]. The difference between the demand and supply of water in 

agriculture is considered a problem that must be solved through 

advanced technologies to optimize resource use [5]. A precision or 

smart irrigation system is a sustainable method of saving water to 

maximize crop yields and reduce the unwanted environmental 

impacts of irrigation [6].  

Worldwide there are numerous advances in terms of 

different technologies applied to agriculture for better performance 

in general, through the use of the Internet of Things (IoT) [7], 

robotics [8], or Artificial Intelligence (AI) techniques [9], to cite 

just a few examples. 

The various crops company "Valle del Yabú", is the main 

productive center of the province of Villa Clara, there is the base 

business unit (UEB, acronym in Spanish) for protected and semi-

protected crops, which has several of these premises to produce 

vegetables, which have a semi-automated irrigation system.  

Despite the good results obtained today in greenhouses, the 

institution's experts indicate that better resource optimization can 

be achieved [10], either in favor of reducing consumption or 

increasing production. Taking the best of previous related works 

[11],[12], this research aims to contribute to this scientific problem 

in search of a viable solution, which only requires the knowledge 

of experts. 

For this purpose, fuzzy logic is among the most widely used 

AI tools in current agriculture [13] when it is necessary to raise 

production results and optimize resources, especially in processes 

that require a knowledge base that is normally only available to 

experts on the subject, but that through the simple use of everyday 

language can be collected and put in a position to be improved and 

expanded. Numerous recent uses in the literature show the potential 

of this technique in a general way [14-17] and more attached to the 

topic of intelligent irrigation specifically [18-21]. 
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The case study, cucumbers (Cucumis sativus L.), are among 

the most cultivated vegetables in the world, and due to their 

widespread use, there is a rich variety of these fruits [22].  

Regardless of its genotype, there is a general trend of this 

crop (and of most plantations) towards certain conditions necessary 

for favorable growth, the most influential variables are ambient 

temperature, relative humidity, soil moisture, lighting, pH, and 

electrical conductivity [22],[23]. Only a few variants modified for 

certain climates escape generality [22]. 

 The created model interacts in a deployed IoT system, 

using the ThingBoard platform, which is open-source software for 

the collection, processing, visualization, and management of data 

from devices [24],[25]. The communication protocol used is 

MQTT, developed by the OASIS organization, which is a standard 

communication protocol designed for the IoT [26],[27]. 

The programming languages MATLAB and Python are 

used in favor of building the model. MATLAB is an environment 

highly used by the scientific community, and Python is one of the 

favorite programming languages for AI development due to its 

syntactic simplicity and versatility. Both have an extensive amount 

of tools for AI development [28-31]. 

 

II. LOGIC AND FUZZY SYSTEM FOR IRRIGATION 

MODEL 

The fuzzy system (FS) designed has four fundamental 

standard functional blocks Figure 1 [32]. Intentionally, from the 

first stage, the design was made in MATLAB due to the great 

potential of the Fuzzy Logic Toolbox, and because the prototype is 

achieved in a highly visual, fast, and efficient way. The version 

used was MATLAB 2022a. 
 

 
Figure 1: Fundamental functional blocks of a fuzzy system of quantitative input and output. 

Source: Authors, (2025). 

A fundamental point in the FS is the definition of both the 

input and output variables. To select the inputs used in cucumber 

(Cucumis sativus L.) production, the environmental variables that 

have the most influence and are available in the IoT system 

installed in the greenhouses were chosen. 

The selected input variables were: ambient temperature, soil 

moisture, and lighting. The only output variable needed was: 

irrigation time, which corresponds to the duration of the suggestion 

given to the operator at the time of the irrigation schedule. Was 

only modified the time and not the frequency of irrigation because 

it is expected that the crops have a fixed daily frequency of four 

times. 

II.1 DESIGN OF THE FUZZY LOGIC 

II.1.1 MEMBERSHIP FUNCTIONS 

The memberships proposed here consist of triangular and 

trapezoidal functions for the FS inputs and output, respectively. 

The figure below shows the independent value (x) versus the 

degree of membership (µ) for both. 

 

 
Figure 2: Membership functions: a) trapezoidal b) triangular. 

Source: Authors, (2025). 

As can be seen in Figure 2 a) due to its shape, the trapezoid 

is determined by four critical points. The universe of discourse was 

partitioned using this function into three subspaces, and it was 

applied in a general way to the variables: temperature, soil 

moisture, and lighting (input variables). In this way, each linguistic 

variable is associated with a value as shown in the following table: 
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Table 1: Variables and linguistic values of system inputs. 

 Linguistic value 

Temperature Cold Favorable Hot 

Soil Moisture Dry Favorable Wet 

Lighting Dark Medium High 

Source: Authors, (2025). 

As can be seen in Figure 2 b) due to its shape, the triangle 

is determined by three critical points. The universe of discourse 

was partitioned using this function into five subspaces, and it was 

applied to the only output variable: irrigation time. In this way, 

each linguistic variable is associated with a value as shown in the 

following Table 2: 

 

Table 2: Variables and linguistic values of system output. 

 Linguistic value 

Irrigation 

Time 

Zero 

(Z) 

Short 

(S) 

Medium 

(M) 

Long 

(L) 

Very Long 

(VL) 

Source: Authors, (2025). 

II.1.2 FUZZY RULE SET 

To build the knowledge base of the system, Mamdani's rules 

were used [32]: 

 

IF 𝑥1 is �̃�1
𝑘, 𝑥2 is �̃�2

𝑘 and 𝑥3 is �̃�3
𝑘

 THEN 𝑦𝑘 es �̃�𝑘     (1) 

k = 1,2,3…r 

 

Where 𝐴 ̃1𝑘 and �̃�2
𝑘 are the representation of the fuzzy set for 

the k-th antecedent and �̃�𝑘 is the fuzzy set of the k-th consequence. 

A system of three inputs and three linguistic values, as is the 

case, to be fully expressed with only conjunction operators, must 

have, according to the multiplication rule, 3 ∗ 3 ∗ 3 = 27 rules. 

Fuzzy standard operations were selected as connectors, (2) as a 

conjunction operator, and (3) for the aggregation of the rules. Let 

�̃� and �̃� be two fuzzy sets: 

 

𝜇𝐴 ̃⋃ �̃�(𝑥) = 𝜇�̃�(𝑥) ∨ 𝜇�̃�(𝑥) = 𝑚𝑎𝑥(𝜇�̃�(𝑥), 𝜇�̃�(𝑥)) (2) 
 

𝜇�̃� ∩ �̃� = 𝜇�̃�(𝑥) ∧ 𝜇�̃�(𝑥) = 𝑚𝑖𝑛(𝜇�̃�(𝑥), 𝜇�̃�(𝑥)) (3) 
 

 Tables 3, 4, and 5 express the set of rules used for the 

system, based on one of the three possible linguistic values of the 

soil moisture variable. 
 

Table 3: Rules for the duration of irrigation at dry soil moisture. 

 Lighting 

Temperature Dark Medium High 

Cold VL VL VL 

Favorable M L L 

Hot Z S S 

Source: Authors, (2025). 

Table 4: Rules for the duration of irrigation at favorable soil 

moisture. 

 Lighting 

Temperature Dark Medium High 

Cold M M M 

Favorable P M M 

Hot Z P M 

Source: Authors, (2025). 

Table 5: Rules for the duration of irrigation at favorable wet 

moisture. 

 Lighting 

Temperature Dark Medium High 

Cold Z Z Z 

Favorable Z Z Z 

Hot Z Z Z 

Source: Authors, (2025). 

II.1.3 INFERENCE AND DEFUZZIFICATION METHOD 
 

The implication mechanism used is also standard and 

responds to operation (3). The system is of the Mamdani type, so 

operator (2) was used for the aggregations. The method used for 

defuzzification is the centroid method. The center of gravity of the 

resulting set is the final output of the system, this is the estimated 

irrigation time, finally expressed as a numerical value. 

 

II.2 DESIGN OF THE FUZZY SYSTEM FOR EMBEDDED 

HARDWARE 

The device selected to deploy the system was a Raspberry 

Pi 4 Model B. The board is part of the IoT system mounted in the 

greenhouses of the "Valle del Yabú", where its function is precisely 

to receive data from sensors, process them and output the estimated 

irrigation time, which acts as an Agricultural Decision System 

Support (ADSS). The deployed sensors Figure 3 measure a variety 

of environmental variables, but of these, they are only inputs to the 

system, the three necessaries for its operation. 

 

 
Figure 3: Sensor node. 

Source: Authors, (2025). 

The sensor readings come to the Raspberry Pi by sending 

packets using the MQTT protocol, and once the prediction is made, 

the result is transmitted using the same protocol. The ThingsBoard 

platform oversees establishing the necessary broker for 

communication and allows the visualization of both the behavior 

of the variables involved, as well as the suggested irrigation time 

in real-time, which the operator must consider when scheduling the 

time. The platform resides in another Raspberry Pi of the same 

model, exclusively dedicated to serving as a server for the IoT 

system. 

Each node or sensing device has a publication topic called 

"Node". Under this topic, and with the use of a dictionary of six 

variables, the information is transmitted to the broker. The 

Raspberry Pi is subscribed to that topic, and after using the 

necessary variables as inputs to the FS, it returns another one that 
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contains only the output of the model. The architecture shown in 

Figure 4 describes the data flow in a general way. 

 

 
Figure 4: Architecture for the coupling to the IoT system. The FS 

is isolated from the coordinator node. 

Source: Authors, (2025). 

II.2.1 FUZZY SYSTEM PROGRAMMING 

 

To program the FS scripts in the embedded hardware, the 

Python programming language in its version 3.11 was used and the 

Anaconda distribution was used as a work environment, due to its 

ease in managing packages in the field of data science. The third-

party modules used were: scikit-fuzzy and paho-mqtt. As a 

complement, the pandas and matplotlib modules were also needed 

to manage data structures and visualize the results respectively. 
 

III. GETTING THE IRRIGATION SYSTEM 

The model obtained is an FS 3-1, it has three inputs and a 

single output. The system was built in MATLAB, using Fuzzy 

Logic Toolbox, and named: “FSystem”. Its general configuration 

is shown in Figure 5. 

 

 
Figure 5: Obtaining fuzzy logic in MATLAB. 

Source: Authors, (2025). 

The membership functions were conceived from the 

reviewed literature and the criteria of the UEB experts of protected 

and semi-protected crops of the "Valle del Yabú". 

Due to the use of only trapezoidal and triangular 

membership functions, the assignment of critical points was 

determined in a highly relational and intuitive way. Each input 

variable in Tables 6 and 7 presented a "Favorable" or "Normal" 

range that describes the set of fuzzy values that favor plant growth, 

with a plateau of unitary membership value, which alludes to the 

possible threshold or tolerance that exists in the quantitative 

description of the range, which by nature presents uncertainty. 

The other two extreme ranges, with consistent linguistic 

values, describe the limit conditions for the variable to which 

analysis is made, presenting in the same way, a plateau of unitary 

membership value to compensate for the diffuse character of said 

limits. 

On the other hand, the output variable Table 8, when 

representing fixed amounts of irrigation of a practical nature, could 

be eliminated from uncertainty plateaus, and therefore the 

triangular function remained as a result of its description. 

The input variables are expressed in Celsius degrees (°C), 

percentage ratio (%), and luminous flux per unit area (lux) 

correspondingly. The output variable "Irrigation_time" is 

expressed in minutes (min). 

 

Table 6: Critical points of the “Temperature” membership 

function. 

 Cold Favorable Hot 

Critic 

points 
[0 0 14 20] [14 20 30 40] [30 40 50 50] 

Source: Authors, (2025). 

Table 7: Critical points of the “Soil_moisture” membership 

function. 

 Dry Favorable Wet 

Critic 

points 
[0 0 17 22] [17 22 26 50] [26 50 60 60] 

Source: Authors, (2025). 

Table 8: Critical points of the “Lighting” membership function. 

 Dark Medium High 

Critic 

points 
[0 0 0.45 1] 

[0.45 1 13000 

175000] 

[13000 175000 

21000 21000] 

Source: Authors, (2025). 

Table 9: Critical points of the “Irrigation_time” membership 

function. 

 Z S M V VL 

Critic 

points 

[0 0 

7.5] 

[0 7.5 

15] 

[7.5 15 

22.5] 

[15 22.5 

30] 

[22.5 30 

30] 

Source: Authors, (2025). 

III.1 FUZZY RULE SET 

The rules described for the FS are analyzed in Tables 3, 4 

and 5. Of the set of 27 total rules, many of these presented logical 

redundancy, therefore, taking advantage of the idempotent nature 

of the conjunction operator, the existing rules were reduced to 15, 

making use of the property expressed in equation (3). 
 

IF 𝐵1 = 𝐵2 =  𝐵3 = ⋯ 𝐵𝑛 
 

𝐴 ∪ 𝐵1 ∪ 𝐵2 ∪  𝐵3  ∪ … 𝐵𝑛 = 𝐴 (3) 

 

In this way, the rules that express the system become more 

coherent and attached to natural language, for example, Table 10 

summarizes a simple expression: "If Soil_moisture is wet then 

Irrigation_time is zero" (Rule 1). Table 5 shows the rules obtained. 

The symbol "x" means "don't care" the value of the linguistic 

variable. 
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Table 10: Reduced rules for the FIS. 

Rule Input Output 

 Temperature Soil Moisture Lighting Irrigation time 

1 x Wet x Z 

2 Cold Favorable x M 

3 Favorable Favorable High S 

4 Favorable Favorable Medium M 

5 Favorable Favorable Dark M 

6 Hot Favorable High Z 

7 Hot Favorable Medium S 

8 Hot Favorable Dark L 

9 Cold Dry x VL 

10 Favorable Dry High M 

11 Favorable Dry Medium L 

12 Favorable Dry Dark L 

13 Hot Dry High Z 

14 Hot Dry Medium S 

15 Hot Dry Dark VL 

Source: Authors, (2025). 

III.2 INFERENCE AND DEFUZZIFICATION METHOD 

By using the proposed inference and defuzzification 

methods, the FS responded as shown in Figure 6. An example is 

observed for the intermediate values of the universe of discourse, 

activating rules 1 and 4, unifying the sets obtained employing the 

operator (1), and quantifying the response by the centroid method, 

to obtain an estimated irrigation time of 13.4 min. 
 

 
Figure 6: Simulation of the FS in Fuzzy Logic Toolbox. 

Source: Authors, (2025). 

    Given the configuration of the system and its 

defuzzification method, the minimum possible time that the FS can 

suggest is 2.4 min, and a maximum of 27.5 min. 

    The behavior of the output, concerning temperature and 

lighting, is complex, and as expected, highly dependent on soil 

moisture. There is a natural gradient to the increase in irrigation 

time with the decrease in soil moisture, for the same surface level. 

Figure 7 shows these two variables compared, for different soil 

moisture references.The first of these graphs a), shows visually and 

in a more evident way, the maximum point of 27.5 min, which is 

between the temperature values of 0 and 10, and which is 

independent of lighting, which is expected behavior. On the other 

hand, the last graph d) shows rule number two of the FS obtained, 

in which regardless of the variations of the remaining parameters, 

the irrigation time is 2.4 min, which corresponds to the minimum 

point of our system. 

The valleys or plateaus presented by the levels are coherent 

with those existing in the membership functions because describe 

the range of uncertainty or error rate of the linguistic values. 

 

III.3 INFERENCE AND DEFUZZIFICATION METHOD 

After a prototype, the FS was embedded in the Raspberry Pi 

4 Model B, which serves as a data analysis server in the mentioned 

IoT system (Figure 4). The script that integrates the model was 

transferred to the SD card, and it was configured as a process to be 

executed in an infinite loop at each boot of the device. 

To verify the correct rewriting between both languages, 

graphs of the membership functions of both the input and output 

variables of the system were generated, using the matplotlib 

module. 

To verify the correct transfer of the rules, as well as the 

inference and defuzzification methods, a random test database with 

3000 points was generated, which were compared to those returned 

by the FS created in MATLAB using a script that made use of the 

Python random module. The test presented 100% compatibility 

between the datasets. 

The verification of the FS obtained for the embedded 

hardware was preceded by the verification of its correct coupling 

to the IoT technology. In the ThingsBoard platform of the main 

node, a new device named "Raspberry AI" was created in charge 

of the administration of the Raspberry Pi of this project. Random 

test data was sent to it, and upon verification of receipt, the 

dashboard was configured for the final consumer. The window that 

the operator can observe is shown in Figure 8. 
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Figure 7: Surfaces in the Fuzzy Logic Toolbox. References of soil moisture: a) 0%, b) 20%, c) 40%, d) 60 %. 

Source: Authors, (2025). 

 
Figure 8: ThingsBoard visualization dashboard. 

Source: Authors, (2025). 

History charts are configurable in the sample range and 

interval they can display. These serve to provide a notion of the 

behavior of variables over time. As additional data, each one shows 

in the lower right part the average behavior of the variable. In the 

upper right part of the entire window, there is a widget to show the 

FS irrigation prediction in real-time. 

 The display panel is displayed on a Kuman 7" 1280x800 

screen, connected to the central Raspberry Pi that the ThingsBoard 

platform server has. When programming the watering time of the 

pumping, the operator must make use of it, and based on your 

experience and the suggestion given, set the end time. One of the 

last tests carried out on the embedded FS was the measurement of 

the time it took the Raspberry Pi to process and send a single data 

packet with the required information. After using the time module 

and measuring the execution time interval of 1000 sends, the 

average delay was 1.71 seconds. This period is much lower than 

the data collection rate of the IoT deployment, which is 15 min. 

 

IV. EVALUATION  

In a lapse of time of a month, the IoT network was installed 

in one greenhouse. During this period, samples of the input 

variables of the system were taken.  

Table 11 shows an analysis of the stored data, specifically 

for the center's irrigation schedules. Four data packets are received 

every hour since the nodes are transmitted with a frequency of 15 

min. The number of samples is not uniform, nor does it correspond 

to the 112 that do not exist in total, this is due to possible losses, 

either due to transmission problems of the sensing nodes or 

reception of the platform, disconnection of the devices due to lack 

of power supply or other inconveniences. 

The range of the variables, minimum and maximum 

possible value, is framed in the universe of discourse of the 

membership functions of the designed FS. Even if the sensing of a 

variable exceeds these limits, no error will occur, since the 
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embedded FS was built so that any of these values can be 

interpreted by extreme linguistic values. 

Beyond the irrigation schedules, it is interesting to explore 

the behavior of the variables globally, that is, of the entire sample. 

When observing the standard deviations in Table 12, these present 

a significantly small value compared to the values in which the 

variable in question oscillates. 

This fact is typical of greenhouses, given their controlled 

environment. On the other hand, the mode and the mean represent 

two indicators of great interest for our FS. These are a measure of 

the trend of environmental conditions in the crop cycle, which are 

little fluctuating as previously shown by the standard deviation. 

The fact that the mode for illumination is 0 lux, for the sample data 

set, indicates that most of the IoT system operation occurred at 

nighttime. 

By substituting these points of interest in the FS using the 

Fuzzy Logic Toolbox, the results of Figure 9 are obtained. The 

model estimates the same irrigation time currently made by the 

operators: 15 minutes. This indicates that, on average, the FS 

expresses the same level of knowledge as the experts, resulting 

from their accumulated experience. Outside the threshold close to 

the trend of the variables, the FS expresses "new experiences". 

 

 
Figure 9: Evaluation of central tendency values in Fuzzy Logic 

Toolbox. 

Source: Authors, (2025). 

Table 11: The extreme behavior of the input variables during the 

sample period for irrigation schedules. 

Schedules 
Temperature 

(°C) 

(Min-Max) 

Soil 

Moisture 

(%) 

(Min-Max) 

Lighting 

(lux) 

(Min-

Max) 

Samples 

8 AM 22.6 – 30.1 1.72 – 37.52 1309 - 

9339 

109 

10 AM 27.2 – 36.9 11.78 – 

36.02 

4391 – 

16831 

108 

1 PM 32.2 – 42.5 12.45 – 

40.61 

410 - 

18178 

56 

3 PM 28.9 – 46.1 13.75 – 

39.88 

591 - 

20072 

44 

Source: Authors, (2025). 

 

Table 12: General behavior of the input variables during the 

sample period. 
 Temperature 

 (°C) 

Soil Moisture 

(%) 

Lighting 

(lux) 

Min - Max 21.6 – 47.8 0.32 – 40.61 0 - 20723  

Variance 29.97 44.98 29408484.7 

Standard 

Deviation 

5.47 6.71 5422.96 

Mode 23.8 23.94 0 

Mean 28.27 24.0 3800.07 

Source: Authors, (2025). 

The 2182 samples collected, without discriminating hours, 

were processed by the FSystem module, and the prediction was 

obtained for each triad of values. The Pearson correlation matrix is 

plotted in Figure 10. Irrigation time is inversely proportional to the 

three FS inputs. Although the correlation is not necessarily 

indicative of a cause-effect, it shows that to a greater extent, the 

achieved model is dependent on soil temperature and moisture, and 

to a lesser extent on lighting. 
 

  
Figure 10: Pearson correlation of the processed samples. 

Source: Authors, (2025). 

With the use of the processed data the graph of the behavior 

of the inputs and the output of the FS for the irrigation schedules 

are constructed (Figure 11). The notable correlation between 

temperature and lighting in the greenhouse can be qualitatively 

observed, which can be related quantitatively to the results 

obtained in Figure 10 (0.77 units of Pearson correlation). 

Since the soil moisture has a lower range of oscillation, the 

changes in the FS predictions move around according to the other 

conditions: the temperature and lighting, because both are the most 

fluctuating and time-dependent variables. These fluctuating 

variables are highly dependent on the time of day. From all this 

information it can be concluded that, despite having built the FS 

giving greater weight to the soil moisture variable, in practice, for 

our case study, the most determining variable so far is temperature. 

It is observed that the general tendency of the suggested 

time is to decrease as the day progresses, which is evident 

quantitatively in the averages of Table 13, except in the last hour. 

The FS decreases its output and limits the minimum and maximum 

values to the pair. The model notices a greater need for irrigation 

in the first shift, and then the prediction of all the others falls below 

what the standard time establishes. The final result is that in 

accumulation, the model reduces resource use from 4755 to 4276 

min, meaning 10.07%. 
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Figure 11: Graph of the inputs and output of the FS of the samples for the irrigation schedules. 

Source: Authors, (2025). 

Table 13: Irrigation times in study hours. 

 Schedules 

8 AM 10 AM 1 PM 3 PM 

Minimum time (FS) 11 min 10 min 2 min 5 min 

Maximum time (FS) 23 min 19 min 18 min 16 min 

Mean time (FS) 16.75 min 13.75 min 8.98 min 10.5 min 

Standard time 15 min 15 min 15 min 15 min 

Total time (FS) 1826 min 1485 min 503 min 462 min 

Standard total time 1635 min 1620 min 840 min 660 min 

Accumulated time (FS) 4276 min 

Standard accumulated 

time 

4755 min 

Source: Authors, (2025). 

V. DISCUSSION 

 

The use of an FS as a solution to the modeling of the 

irrigation system is a more manageable and interpretable 

alternative in contrast to the methods of Fuzzy Cognitive Maps in 

previous works made for the institution [11],[12]. The main 

knowledge engine of the system, the membership function and 

fuzzy rules are obtained directly from the knowledge of experts. 

The model built from the use of fuzzy logic is not specific, nor 

exclusive, for the case study, but rather the proposed methodology 

allows the same procedures to be applied to any other variety in 

protected cultivation at the center.  

 Much of the reviewed literature makes use of an FLC, as 

a solution to the problem of the intelligent irrigation system, 

controlling the irrigation system either by closing or opening a 

valve or by continuously establishing the irrigation time using 

timers. Faced with this, the FS designed as ADSS has the 

disadvantage of having a delayed action. The final action element, 

the irrigation system, is activated by the operator, and once the 

process is started its interruption is manual. In the time frame of 

the programmed irrigation, the climatic conditions can have 

abrupt changes, such as those caused by a sudden rain, which 

affects the system variables, and although the prediction changes 

accordingly, the FS cannot impose the new state. 

 The computational cost of the FS is negligible concerning 

other AI techniques, and this is evidenced by the short average 

response time for receiving, processing, and sending data. This 

feature makes it versatile and less dependent on large hardware 

resources. The IoT architecture where the model is coupled 

presents great modularity, since by isolating a node for data 

processing, the main node that serves as server and orchestrator is 

not saturated by the execution of algorithms. From the reviewed 

literature, the implementation of the model in architectures such 

as those presented in [18],[20] would entail a computational 

overload, since the UEB has a total of 42 cultivation houses, a 

considerable number of threads to be processed by the node 

coordinator.  

VI. CONCLUSIONS 

 

In this research, an irrigation model based on fuzzy logic 

was designed, specifically a fuzzy system, for embedded 

hardware, for the optimization of water resources. Based on the 

work carried out, the following conclusions were reached: 

• The interpretability of the FS makes the model practical. 

The selection of trapezoidal membership functions and their 

consequent unit plateaus in the fuzzification process of the FS 

entries allowed the expression of the error presented by the 

linguistic values according to expert criteria: 

• The model obtained is computationally light, with an 

average response time between reception, processing and sending 

of 1.71 seconds, making it suitable for the chosen hardware. 

• The FS shows satisfactory behavior, taking the same 

standard decision as the operators for the trend of the samples 

collected, and suggesting, in general, a reduction of 10.07% of the 

irrigation time, that is, a proportional saving of resources. 
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