
Journal of Engineering and Technology for Industrial Applications 
 

ITEGAM-JETIA 
 

Manaus, v.11 n.52, p. 247-260. March./April., 2025. 

DOI: https://doi.org/10.5935/jetia. v11i52.1694 
 

 

RESEARCH ARTICLE                                                                                                                                        OPEN ACCESS 

 

 

Journal homepage: www.itegam-jetia.org 

 

ISSN ONLINE: 2447-0228  

PROCESS OPTIMIZATION AS A TOOL FOR ANALYZING PERFORMANCE 

INDICATORS OF ADDITIONAL TAXI-OUT AND TAXI-IN TIME OF THE 

BRAZILIAN AIRSPACE CONTROL SYSTEM 

Alessandro Soares de Freitas1, Edilson Marques Magalhaes2 

1Student in the Postgraduate Program in Process Engineering at the Federal University of Pará,  
2Professor in the Postgraduate Program in Process Engineering at the Federal University of Pará. 

1 http://orcid.org/0000-0005-2663-6765 , 2http://orcid.org/0000-0003-3056-0757  

Email: alessandrosfreitas@hotmail.com, magalhaes@ufpa.br. 

ARTICLE INFO  ABSTRACT 

Article History 

Received: March 13, 2025 

Revised: March 20, 2025 

Accepted: March 15, 2025 

Published: April 30, 2025 

 
 

This study aims to improve the efficiency of Brazilian air traffic by analyzing the Brazilian 

Airspace Control System (SISCEAB) performance indicators. The methodology used 

combined alternative data sources, namely BIMTRA, TATIC FLOW, and VRA, which were 

employed to examine the impact of different variations in taxiing times. Specifically, 

Additional Taxi-Out Time (KPI 02) and Additional Taxi-In Time (KPI 13) were analyzed 

to identify discrepancies among these data sources and determine the most precise 

combination. The results indicate that airport layout, gate distribution, and runway threshold 

selection significantly impacted taxiing times. Statistical analysis revealed substantial 

variations in unimpeded taxi times across different gates and runway thresholds, 

emphasizing optimizing operational flows. Based on these findings, integrating BIMTRA 

and VRA is recommended for more accurate KPI measurement. Therefore, this study 

contributes to implementing operational enhancements, optimizing airport operation flow, 

and leading to a more efficient management of Brazilian air traffic. 
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I. INTRODUCTION 

The increasing complexity and competitiveness of the air 

traffic sector impose significant operational challenges on 

organizations responsible for airspace control. In Brazil, the 

Department of Airspace Control (DECEA) establishes processes 

and methods to enhance organizational planning in Air Traffic 

Management (ATM) [1]. 

However, the lack of reliable data for analyzing 

performance indicators compromises operational efficiency 

assessment, particularly regarding Additional Taxi-Out Time (KPI 

02) and Additional Taxi-In Time (KPI 13). 

The absence of consolidated data sources and the difficulty 

in accessing reliable information limits the ability to diagnose and 

improve airport operations, directly impacting performance 

management and the efficiency of air navigation services. 

Process optimization contributes to safety and air traffic 

organization, creating a more efficient operational environment. 

Within the ATM context, performance indicators play a key role in 

providing a comprehensive view of operational performance, 

enabling comparisons between airports. Their analysis is crucial for 

improving performance-based management and enhancing 

navigation service efficiency [2]. 

Thus, implementing process optimization strategies 

emerges as a fundamental approach to continuous sector 

improvement. The systematic review and enhancement of 

methods, procedures, and workflows create significant 

opportunities for reducing operational costs and promoting 

economic and environmental sustainability. 

This study proposes optimizing the Brazilian Airspace 

Control System (SISCEAB) performance through a critical 

evaluation of key performance indicators and available data 

sources. The research analyzes taxi time variability and the 

influence of variable combinations on KPI calculations, aiming to 

identify discrepancies and opportunities for process improvement. 

This study's main contribution lies in identifying alternative 

and reliable data sources for evaluating operational performance 

and establishing a benchmarking framework for the databases 

currently used in air traffic monitoring. This structured approach 
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enables an in-depth analysis of the Key Performance Areas (KPA) 

for Efficiency, facilitating more accurate airport comparisons. 

Additionally, this study proposes enhancements for 

performance-based management, focusing on Efficiency and 

sustainability in airport operations. Considering that fuel costs 

account for approximately 41% of airline operating expenses, 

optimizing these processes can generate significant cost reductions 

and mitigate environmental impacts [3]. 

Therefore, this research advances theoretical knowledge on 

process optimization and performance indicator analysis within the 

ATM context and proposes practical solutions to improve the 

Efficiency of Brazilian airspace control. By addressing complex 

operational challenges, this study contributes to a safer, more 

effective, and sustainable air traffic management system in the 

country. 

 

II. THEORETICAL REFERENCE 

II.1 AIR TRAFFIC 

II.1.1 Characterization of the Brazilian Airspace Control System 

 

The Brazilian Airspace Control System (SISCEAB) is a 

critical infrastructure designed to ensure the safety and efficiency 

of air traffic. It comprises control towers, area control centers, radar 

systems, and advanced communication networks, coordinating 

operations from takeoff to landing. 

The integration of international regulations, rigorous 

procedures, and technological advancements highlights the 

system’s complexity. Challenges such as increasing air traffic and 

the introduction of unmanned aircraft drive ongoing research 

efforts aimed at enhancing efficiency and safety. 

 

II.1.1.1 Responsible Organizations 
 

The Brazilian Airspace Control System (SISCEAB) is 

responsible for managing and controlling airspace, as well as 

providing air navigation services throughout the country. It is a 

comprehensive and effective system that ensures the organization 

and safety of air traffic flow [4]. 

The Aeronautics Command Directive (DCA) establishes the 

flexible use of Brazilian airspace and assigns the Department of 

Airspace Control (DECEA) the responsibility for controlling and 

administering an area of 8,511,965 km² of national territory, 

including the oceanic region up to the 10°W meridian, totaling 22 

million km² [5]. 
 

 
Figure 2: Air Traffic Control Jurisdiction in Brazil. 

Source: Authors, (2025). 

The Air Navigation Management Center (CGNA), a unit 

under DECEA, is responsible for balancing demand and capacity 

at airports and control sectors, working in collaboration with 

airlines, Air Navigation Service Providers (ANSPs), and control 

centers to optimize air traffic flow in Brazil [6]. 

Brazilian controlled airspace is divided into five Flight 

Information Regions (FIRs), managed by the Integrated Air 

Defense and Air Traffic Control Centers (CINDACTA), ensuring 

supervision and operational safety of air traffic within national 

territory. 

 

II.1.1.1 Air Traffic Management 

 

Air traffic refers to the coordinated movement of aircraft 

within airspace, regulated by specific systems and procedures to 

ensure safety, efficiency, and order in operations. This complex 

system involves Air Traffic Control (ATC), airports, navigation 

systems, communication networks, and regulations that maintain 

the smooth and secure flow of operations, both on the ground and 

in the air [7]. 

 

 
Figure 3: Operational Authority Jurisdiction. 

Source: Authors, (2025). 

Air Traffic Management (ATM) aims to dynamically and 

integratively coordinate air traffic and airspace, ensuring safety, 

efficiency, and cost-effectiveness in operations, while fostering 

collaboration among stakeholders [7][8]. 

ATM is directly related to air traffic demand, influencing 

flight planning and managing delays in landings and takeoffs at 

airports. Its structure is based on three key components: Air Traffic 

Service (ATS), Airspace Management (ASM) and Air Traffic Flow 

Management (ATFM) 

Air Traffic Flow Management (ATFM) is a service 

designed to ensure safe, organized, and efficient traffic, enabling 

Air Traffic Control (ATC) to operate at full capacity, in accordance 

with the declared capacity set by the competent authority [8],[9]. 

ATFM seeks to balance capacity and demand, making the 

definition and understanding of key operational parameters 

essential for service efficiency. Its measures aim to maximize 

available capacity, adjusting the traffic flow along a route or at an 

aerodrome, preventing operational imbalances [10]. 

 

II.1.2 Performance-Based Management 

 

The evaluation of organizational performance focuses on 

financial aspects, quality, and productivity, categorized into 

strategic goals (long-term objectives), tactical goals (process and 

personnel monitoring), and operational goals (real-time evaluation) 

[11],[12]. 
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The International Civil Aviation Organization (ICAO) 

develops air navigation principles and promotes global 

transportation, encouraging performance benchmarking and the 

use of Key Performance Indicators (KPIs) to optimize sector 

management [13]. 

In Brazil, performance-based management seeks to 

optimize and efficiently utilize air traffic controllers' workforce, 

prioritizing performance, capacity, and resource management [14]. 

Performance indicators play a fundamental role in 

measuring results, ensuring higher quality and efficiency in 

decision-making and risk mitigation [15]. These indicators are 

classified as objective (unambiguous measurement) and subjective 

(requiring contextual interpretation) [16]. Their proper application 

enhances strategic decision-making and optimizes available 

resources [17]. 

Additionally, these indicators help in defining priorities and 

continuously evaluating processes, enabling adjustments and 

effective monitoring of organizational impacts [18]. In the 

corporate sector, they support structured strategic planning [19] 

and establish technical foundations for regulatory 

recommendations and program implementation [20]. 

In the air transport sector, performance analysis is becoming 

increasingly relevant, highlighting the importance of indicators for 

evaluating revenues, costs, and airport operations [21]. Identifying 

the relationship between demand, airport capacity, and flight 

punctuality underscores the importance of operational planning 

[22]. 

KPIs are essential for continuous improvement, providing 

an objective view of organizational performance. They monitor, 

communicate objectives, motivate teams, and drive improvements, 

serving as essential tools for efficient and sustainable management 

[23]. 

The definition of Key Performance Areas (KPA) represents 

management methodologies that reflect an organization's strategic 

vision [24]. The critical elements for process management include 

monitoring and effective process control, with the identification of 

relevant KPIs being essential for evaluating the analyzed processes 

[25]. 

KPIs represent key metrics in quantifying process 

performance and are widely recognized as fundamental elements 

in planning and control. Their relevance lies in providing critical 

information that supports more precise decision-making [26],[27]. 

The Department of Airspace Control (DECEA) adopted 

ICAO's 2016 performance indicators through DOC 9750-NA/963 

– 2016-2030 (Global Air Navigation Plan - GANP), which 

established 19 KPIs aimed at verifying whether these indicators 

accurately express the intent of specific objectives [28]. 

Thus, metrics can represent past, present, and future 

performance, correlating with organizational objectives to support 

a more effective performance management strategy. 

 

II.1.3 Application of the Business Process Management Cycle 

 

Business Process Management (BPM) is an approach that 

has gained increasing interest among administrators and managers 

due to its ability to optimize organizational outcomes. The 

collaborative nature of BPM emerged in the 1990s, introducing a 

new administrative approach focused on restructuring and 

improving organizational processes [29]. 

BPM is widely recognized in specialized literature as an 

essential strategy for improving operational efficiency. According 

to [30], early studies highlighted the importance of process 

reengineering as an effective means to transform organizations and 

achieve substantial performance gains. 

The theory of processes, as proposed by [31], provides the 

foundation for BPM by viewing organizational activities as 

interconnected elements aimed at continuous optimization. At the 

same time, the continuous improvement perspective promotes an 

incremental approach to enhancing efficiency and quality [32]. 

In the context of organizational innovation, [33] emphasizes 

the importance of adopting innovative practices aligned with BPM, 

encouraging the integration of advanced technologies, such as 

automation and process analytics. 

The practical application of BPM is supported by numerous 

benefits, including: Increased operational efficiency, Improved 

process visibility and control, Greater adaptability to business 

environment changes na Enhanced quality and consistency of 

products and services. These aspects are widely discussed in [34] 

and [35]. 

Furthermore, [36] highlights the growing relevance of 

process automation and the integration of emerging technologies, 

such as artificial intelligence and predictive analytics, within BPM. 

These innovations reflect the continuous development and 

adaptation of BPM to the modern business landscape. 

 

 
Figure 4: BPM Cycle. 

Source: [36]. 

 

III. MATERIALS AND METHODS 

In 2016, DECEA initiated a study to implement 

performance-based management as a method for measuring results. 

The initial findings were published in the SISCEAB Performance 

Report 2017, marking a significant milestone in the analysis of 

performance-based management in Brazil. 

From this standpoint, airports were selected based on their 

relevance and flight volume within Brazilian airspace. In the São 

Paulo Terminal Control Area (TMA – SBXP), the international 

airports of Guarulhos (SBGR), Congonhas (SBSP), and Campinas 

(SBKP) were chosen due to their status as major national hubs. 

Additionally, Belém Val-de-Cans International Airport (SBBE) 

and Manaus Eduardo Gomes International Airport (SBEG) were 

included in the Northern Region because of their high traffic 

volume, significant cargo transportation, and important strategic 

infrastructure. This thoughtful selection allows for a 

comprehensive analysis of national air traffic, encompassing both 

key connection hubs and regional logistics centers. 

The calculation of Key Performance Indicators (KPIs) in 

this study follows the ATM indicators methodology from 

SISCEAB. Airlines aim to optimize their gate-to-gate operational 

costs through flight efficiency by using KPI 02 and KPI 13 to 

measure discrepancies in unimpeded times.were included in the 
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Northern Region due to their high movement volume, cargo 

transportation, and strategic infrastructure. This strategic selection 

enables a comprehensive analysis of national air traffic, covering 

both key connection hubs and regional logistics centers. 

The calculations of the Key Performance Indicators (KPIs) 

in this study follow the methodology of ATM indicators from 

SISCEAB [37]. Airlines, through flight efficiency, aim to optimize 

gate-to-gate operational costs by using KPI 02 and KPI 13 to 

measure discrepancies in unimpeded times 

It is important to highlight that taxi time is defined as the 

difference between gate departure and takeoff for KPI 02, and the 

difference between landing and gate arrival for KPI 13. 

 

 
Figure 5: Selection of Airports and KPI’s. 

Source: Authors, (2025). 

The variability of these times directly impacts the planning 

of air operations. Thus, taxi time indicators are essential for airlines 

and airport administrators, as they support the optimization of 

operational efficiency by providing data-driven insights based on 

reliable sources. 

The study adopted a retrospective, documentary, 

exploratory, descriptive, and analytical approach, using data from 

the Airspace Control Institute (ICEA), under the jurisdiction of 

DECEA, as well as the ATM Performance Reports from SISCEAB 

and ANAC (2023). 

The research covers all Air Navigation Service Providers 

(ANSPs) in Brazil that use the TATIC FLOW System, with the 

sample comprising records of landings and takeoffs from 

scheduled commercial flights registered in this system in 2023 at 

airports monitored under the Aeronautics Command Plan and 

selected for this study [38]. 
 

 
Figure 6: Methodology. 

Source: Authors, (2025). 

 The data sources used in the study included TATIC FLOW, 

the Air Traffic Movement Information Database (BIMTRA), and 

the Active Scheduled Flight (VRA) system, which are used to 

measure air traffic control tower (TWR) performance and assess 

the operational efficiency of the selected indicators. Data 

processing involved the preparation, organization, and cleaning of 

the collected information, ensuring its quality and reliability before 

analysis. 

Thus, two datasets were constructed from commercial flight 

records based on movements registered in the TATIC FLOW 

System: the first dataset analyzed KPI 02, containing 290.133 

records, of which 0.57% (1,649 records) were excluded due to 

negative times or values exceeding 40 minutes. The second dataset, 

related to Additional Taxi-In Time (KPI 13), included 291.170 

records, with 0.39% (1,138 records) removed for not meeting the 

established criteria. 

Additionally, cross-validation was performed between the 

BIMTRA, TATIC FLOW, and VRA systems to ensure data 

consistency. In other words, the same movement recorded in the 

TATIC FLOW system was also found in BIMTRA and VRA, 

allowing for accurate comparisons. 

After applying the exclusion criteria, 288.484 takeoff 

movements and 290.032 landing movements were considered, 

ensuring a solid foundation for subsequent analyses.Statistical 

analysis was essential for data interpretation and followed 

complementary steps to ensure a detailed and robust approach. 

Initially, a descriptive and diagnostic analysis of the data was 

conducted, identifying patterns and discrepancies through graphs, 

measures of central tendency, and dispersion statistics. 

Next, variability analysis was performed using metrics such 

as variance, standard deviation, and interquartile range to assess 

data fluctuation. To test hypotheses, non-parametric statistical tests 

such as Mann-Whitney and Kruskal-Wallis were applied. The 

choice of tests was based on the most suitable approach given the 

characteristics of the data, including distribution, variability, and 

independence, ensuring a systematic and reliable analysis. 

A Business Process Management (BPM) cycle was applied, 

focusing on optimizing efficiency and the quality of organizational 

processes. This cycle involved six key phases: Planning, Analysis, 

Modeling, Implementation, Monitoring, and Process Optimization. 
 

IV. RESULTS AND DISCUSSIONS 

The application of the BPM Cycle was designed to integrate 

new data sources for obtaining ATM performance indicators in 

Brazil. During the Planning phase, processes and responsible 

parties were identified using flow diagrams and quality tools, such 

as the Cause-and-Effect diagram. 

This highlighted the need for more reliable sources to 

enhance the accuracy of indicator calculations. In the Process 

Analysis phase, we evaluated inefficiencies and explored new data 

sources, including BIMTRA and VRA. Key variables, such as 

takeoff (ATOT) and gate departure (AOBT) for KPI 02, as well as 

gate arrival (AIBT) and landing (ALDT) for KPI 13, were 

analyzed. These variables are crucial for measuring taxi times and 

improving the accuracy of calculations. 

 

Table 1: Combination for KPI 02. 
Combination Metric 01 Metric 02 

1ª Combination ATOT  (TATIC FLOW) AOBT (TATIC FLOW) 

2ª Combination ATOT (TATIC FLOW) AOBT (VRA) 

3ª Combination ATOT (BIMTRA) AOBT (TATIC FLOW) 

4ª Combination ATOT (BIMTRA) AOBT (VRA) 

Source: Authors, (2025). 
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The Process Modeling phase proposed four combinations of 

data sources for each KPI, allowing for comparisons and greater 

efficiency in the indicators, as shown in Tables 1 and 2. 

 

Table 2: Combination for KPI 13. 
Combination Metric 01 Metric 02 

1ª Combination AIBT (TATIC FLOW) ALDT (TATIC FLOW) 

2ª Combination AIBT (TATIC FLOW) ALDT (BIMTRA) 

3ª Combination AIBT (VRA) ALDT (TATIC FLOW) 

4ª Combination AIBT(VRA) ALDT (BIMTRA) 

Source: Authors, (2025). 

For the statistical tests, significance levels were considered 

as described in Table 3. 

 

Table 3: Test Statistic. 

p-Value Level of Significance 

* < 0.05 

** < 0.01 

*** < 0.001 

ns >= 0.05 

Source: Authors, (2025). 

Process implementation integrates advanced technologies 

and training to optimize activities, reducing manual interventions. 

Process Monitoring established a control system to measure 

KPI effectiveness, ensuring agile adjustments and identifying 

opportunities for continuous improvement. 

Finally, Process Optimization leveraged monitored data for 

operational adjustments and refinement of analyses, enhancing 

efficiency and adaptability to organizational needs. Using KPIs and 

dashboards ensured data-driven decision-making, reinforcing the 

application of the BPM Cycle in air traffic management. 

Table 4 presents the number of landings and takeoffs per 

airport in 2023. 

 

Table 4: Movimento de aeronaves. 

Operação 
Aeroporto 

SBGR SBSP SBKP SBBE SBEG 

Decolagem 110.095 91.557 59.518 14.365 12.949 

Pouso 110.904 92.202 59.738 14.335 12.853 

Total 220.999 183.759 119.256 28.700 25.802 

Source: Authors, (2025). 

Guarulhos Airport (SBGR) recorded the highest number of 

operations, totaling 220.999 movements, followed by Congonhas 

(SBSP) with 183.759 and Campinas (SBKP) with 119.256. In the 

North Region, Belém (SBBE) and Manaus (SBEG) had lower 

volumes, with 14.365 and 12.949 takeoffs and 14.335 and 12.853 

landings, respectively. These figures highlight the concentration of 

traffic in the country’s main TMAs, particularly in São Paulo, 

while also emphasizing the lower operational demand in Northern 

airports, despite their strategic importance in air transport and 

logistics. 

The analysis of Taxi-Out Times revealed an average close 

to 15 minutes and a median around 14 minutes, indicating slight 

asymmetry in the distribution, as the mean is slightly higher. The 

standard deviation ranges between 0.0035 and 0.0038, suggesting 

moderate variation but no significant fluctuations, reinforcing 

operational consistency. 

Comparing different data sources, the 3rd and 4th 

combinations showed similar averages and medians, 

demonstrating that the use of TATIC or BIMTRA does not 

significantly impact the recorded times. Thus, the analysis suggests 

that the Taxi-Out process is stable and predictable, supporting 

efficient air traffic management, as shown in Figure 6. 

 

 
Figure 6: Taxi-Out Time. 

Source: Authors, (2025). 

The variability analysis of Taxi-In Time at the studied 

airports revealed significant differences among the data source 

combinations, as shown in Figure 7. 

In the 1st and 2nd combinations, which considered only 

variants from the TATIC source, the mean values were 2m46s and 

2m49s, respectively, while the medians were 1m45s and 1m46s, 

suggesting the presence of outliers that increase the mean. The 

standard deviation of 0.13s indicates that most values are 

concentrated near the median. 

In the 3rd and 4th combinations, the distributions were more 

symmetrical, with means of 6m06s and 6m09s and medians of 

5m23s and 5m25s, respectively. The standard deviation remained 

low at 0.14s, suggesting greater homogeneity. Overall, the 1st and 

2nd combinations exhibited higher positive skewness due to 

extreme values, whereas the 3rd and 4th combinations were more 

balanced. 

The low standard deviations reflect high consistency in the 

recorded times. However, the outliers in the 1st and 2nd 

combinations should be further investigated, as they may be related 

to atypical operational conditions. Additionally, the average Taxi-

In times in the 3rd and 4th combinations, around 6 minutes, 

indicate the need for a comparative analysis with industry 

benchmarks to identify potential improvements in operational 

efficiency. 

 

 
Figure 7: Taxi-In Time. 

Source: Autor, (2024). 

 

The analysis of Taxi-Out Time at the studied airports 

revealed significant variations across locations, reflecting traffic 
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volume and the operational complexity of each airport, as shown 

in Figure 8 and Figure 9. 

Congonhas (SBSP) recorded the highest average time 

(16m13s), followed by Guarulhos (SBGR) with 15m42s, while 

lower-traffic airports, such as Belém (SBBE) and Manaus (SBEG), 

had shorter times (11m27s and 13m, respectively). 

 

 
Figure 8: Taxi-Out Tima for SBGR, SBSP and SBKP. 

Source: Authors, (2025). 

The medians follow the same pattern, with SBSP and SBGR 

recording the highest values (15m15s and 14m47s), while SBBE 

and SBEG showed more stable times (11m04s and 12m22s). 

The standard deviation, which measures time dispersion, 

was higher in SBSP (0.00384) and SBGR (0.00335), indicating 

greater variability, possibly due to high slot demand. In contrast, 

SBBE (0.00226) and SBEG (0.00229) had lower dispersion, 

suggesting higher operational efficiency. 

 

 
Figure 9: Taxi-Out Time for SBBE and SBEG. 

Source: Authors, (2025). 

The analysis of Taxi-In Times at the studied airports, as 

shown in Figure 10 and Figure 11, revealed distinct patterns in 

central tendency and dispersion. Guarulhos (SBGR) recorded the 

highest average times, reaching 3m56s in the 1st combination and 

7m54s in the 3rd, reflecting a higher traffic volume and potential 

congestion. In contrast, Manaus (SBEG) had the lowest times, with 

1m15s in the 1st combination, suggesting faster and more efficient 

taxiing. 

The medians confirm this trend, with SBGR at 2m45s and 

SBEG at just 28s in the 1st combination, indicating greater 

dispersion in SBGR, where some flights experience significant 

delays. The standard deviation further reinforces this variability, 

being higher in SBGR (0.00257 in the 3rd combination) and lower 

in SBEG and SBKP, suggesting greater operational predictability 

at these airports.  

These results highlight areas for improvement, such as 

traffic management adjustments and infrastructure optimization at 

SBGR, while SBEG can serve as a model for airports seeking 

greater efficiency and reduced taxiing times. 

 

 
Figure 10: Taxi-In Time for SBGR, SBSP and SBKP. 

Source: Authors, (2025). 

 
Figure 11: Taxi-In Time for SBBE and SBEG. 

Source: Authors, (2025). 

In this context, the study aimed to verify the existence of 

significant differences in taxiing times across the analyzed airports. 
 

 
Figure 12: Combinations for Taxi-Out Time 

Source: Authors, (2025). 
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Figure 12 showed statistically significant differences in 

Taxi-Out Time between certain combinations of data sources for 

airports SBGR, SBSP, and SBKP. In contrast, at Belém (SBBE) 

and Manaus (SBEG) airports, these variations were not as 

pronounced. 

SBGR, recognized as one of the busiest airports in Brazil, 

exhibited low p-values, indicating considerable variability in taxi 

times due to its complex operations and high traffic volume. 

Congonhas (SBSP) also demonstrated significant differences, 

likely influenced by the high volume of domestic flights and 

infrastructure limitations. Campinas (SBKP), an essential hub for 

both cargo and passenger transport, also showed variations in taxi 

times, reflecting its connectivity for domestic and international 

flights. 

In contrast, Belém (SBBE) and Manaus (SBEG) had no 

statistically significant differences between data combinations, 

possibly due to their lower traffic volumes and operational 

stability. Nevertheless, taxiing times at these airports are still 

affected by infrastructure, weather conditions, and logistical 

operations. 

Given the relevant differences in taxiing times observed at 

SBGR, SBSP, and SBKP, operational efficiency could be 

enhanced by considering factors such as airport layout, taxiing 

routes, runway holding times, and distances between gates and 

runway thresholds. The key performance indicators (KPIs) 

associated with these times provide valuable insights to optimize 

air traffic flow, reduce excessive taxiing durations, and improve 

overall airport efficiency. 

The analysis of Taxi-In Time comparisons (Figure 11) 

revealed statistically significant differences across all airports 

except for the comparisons between the 1st and 2nd datasets, as 

well as the 3rd and 4th datasets, as illustrated in Figure 13. 

 

 
Figure 13: Combinations for Taxi-In Time. 

Source: Authors, (2025). 

At SBGR, SBSP, and SBKP, the comparisons between the 

1st and 2nd combinations did not show significant differences (p = 

0.61, 0.51, and 0.49, respectively).  

However, when comparing the 1st combination with the 3rd 

and 4th, highly significant differences were observed (p < 2e-16), 

while the comparison between the 3rd and 4th combinations was 

not significant (p = 0.92, 0.91, and 0.93), indicating a higher 

similarity between the latter two. 

At SBBE and SBEG airports, the results followed a similar 

pattern. Comparisons between the 1st and 2nd combinations, as 

well as between the 3rd and 4th combinations, showed no 

significant differences (p ≈ 0.99–1.00). However, when the 3rd and 

4th combinations were compared to the 1st, the differences were 

highly significant (p < 2e-16), suggesting that the 1st and 2nd 

combinations are more homogeneous, while the 3rd and 4th differ 

significantly. 

These results indicate that while some combinations are 

statistically similar, others reflect more pronounced variations in 

Taxi-In Times, influenced by differences in data sources and the 

operational dynamics of the airports. 

Additionally, considering the distances between gates and 

runway thresholds was essential, as they directly impact additional 

taxi time, affecting the airports’ operational efficiency. 

From this perspective, the study also aimed to assess 

whether taxi time variations, as combined from different data 

sources, would impact the efficiency of unimpeded taxi time 

indicators when considering different gate and runway threshold 

combinations. 

For Guarulhos Airport (SBGR), the existence of two 

runways for landing and takeoff operations 10R/28R and 10L/28L 

was verified, as described in the airport chart (Figure 14). 

 

 
Figure 14: SBGR Airport Chart. 

Source: Adapted from [39], (2025). 

 

For departures, the most frequently used threshold was 10L, 

accounting for 75,04% (82.624) of movements, followed by 28R, 

10R, and 28L, with 23,94% (26.353), 0,92% (1.012), and 0.10% 

(106) movements, respectively. For arrivals, 110.994 movements 

were recorded, with runway 10R handling the highest volume at 

81.729 operations, while 28L registered 25.907 landings. Runways 

10L and 28R had lower volumes, with 2.611 and 657 landings, 

respectively. 

SBGR presented 462 possible gate and runway threshold 

combinations, a significant number that reflects its importance as 

the busiest airport in the country. The analysis of gate distribution 

revealed that demand was concentrated in six distinct aprons, with 

the combinations featuring the highest volume of landings and 

takeoffs selected for each of them. 

Gate 207 with runway threshold 10L was the most frequent 

combination, recording 2.125 takeoffs (1,93%), followed by gates 

309 (2.009; 1,82%), 102R (1.979; 1,80%), 401 (1.414; 1,28%), 501 

(654; 0,60%), and 604 (288; 0,26%). 

At runway threshold 28R, the most utilized gates were 

102R, 209, 309, 401, 507R, and 606. Gate 209 led with 765 
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recorded takeoffs (0,70%), followed by gates 311 (711; 0,28%), 

102R (648; 0,59%), 401 (547; 0,50%), 507R (189; 0,17%), and 606 

(111; 0,10%). For arrivals (landings), 552 gate and runway 

threshold combinations were identified. Gate 208 was the busiest, 

with 2.183 landings (1,97%), followed by gates 310 (2.051; 

1,85%), 102R (1.873; 1,69%), 401 (1.531; 1,38%), 504R (553; 

0,50%), and 612L (181; 0,16%), all combined with runway 10R. 

At runway threshold 28L, gates 102R, 209, 309, 401, 507R, 

and 606 recorded the highest landing volumes. Gate 209 was the 

most utilized (765 landings; 0,69%), followed by gates 309 (707; 

0,64%), 102R (648; 0,58%), 401 (528; 0,48%), 507R (173; 0,15%), 

and 606 (58; 0,05%). Figure 15 revealed significant differences 

between the gates and runway threshold 10L in most comparisons, 

indicating relevant operational variations. Gates 102R, 207, 309, 

401, and 501 showed consistent differences among themselves, 

reflecting distinct impacts on taxi times. 

However, the comparison between gates 501 and 604 

resulted in p = 0.07, suggesting no significant difference, possibly 

due to operational similarities or physical proximity. These 

findings reinforce the need to consider gate variability in airport 

planning, optimizing operational efficiency and air traffic flow. 

 

 
Figure 15: Combination of gate and runway 10L for KPI 02. 

Source: Authors, (2025). 

The analysis of Unimpeded Taxi-Out Times for gates using 

runway threshold 28R revealed statistically significant differences 

among gates 102R, 209, 311, 401, 507R, and 604, as presented in 

Figure 16. 

These variations indicate relevant operational differences, 

suggesting that gate allocation directly influences taxi time 

efficiency. The results reinforce the need for strategic adjustments 

in gate utilization to optimize airport resource management and 

improve operational flow at runway threshold 28R. 

 

 
Figure 16: Combination of gate and runway 28R for KPI 02. 

Source: Authors, (2025). 

 
Figure 17: Combination of gate and runway 10R for KPI 13. 

Source: Authors, (2025). 

Figure 17 showed the combination of gate and runway 

threshold at threshold 10R, revealing statistically significant 

differences among gates 102R, 208, 310, 401, 504R, and 612L, 

with p < 0.001 for most comparisons. The exception was the 

comparison between gates 504R and 612L (p = 0,48), which 

showed no significant difference. 

Figure 18 described the combinations of gate and runway 

threshold 28L, revealing statistically significant differences among 

gates 102R, 209, 309, 401, 507R, and 606, except for the 

comparison between gates 507R and 606 (p = 0.94), which showed 

no relevant variation. For all other combinations, p-values were 

below 0.001. 

 

 
Figure 18: Combination of gate and runway 28L for KPI 13. 

Source: Authors, (2025). 

At Congonhas Airport (SBSP), landing and takeoff 

operations take place on two runways: 17R/35L and 17L/35R, as 

described in the airport chart (Figure 19). 

 

 
Figure 19: SBSP Airport Chart. 

Source: Adapted from [39], (2025). 
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Runway threshold 17R was the most frequently used for 

takeoffs, accounting for 59,47% (54.449 movements), followed by 

35L (38,55%; 35.296 movements), 17L (1,10%; 1.006 

movements), and 35R (0,88%; 806 movements). For landings, 

threshold 17R also predominated, with 59,81% (55.145 

movements), highlighting its significance in the distribution of air 

traffic at SBSP. The gate layout for Apron 3 at Congonhas Airport 

(SBSP) covered 84,75% (100) of possible modifications and 

99,97% of movements (91.532). The apron has 30 gates, organized 

into six groups of five gates each, with each group represented by 

the gate with the highest number of movements. 

SBSP identified 118 gate and runway threshold 

combinations for takeoffs, with gate 05 standing out, recording 

2.622 departures (2,86%) when combined with runway 17R. At 

threshold 35L, gates 04, 06, 11, 16, 22, and 26 were analyzed as 

they had the highest traffic volumes. Gate 06 led with 1.712 

recorded takeoffs (1,87%), followed by gates 04 (1.704; 1,86%), 

11 (1.573; 1,72%), 16 (1.030; 1,12%), 22 (976; 1,07%), and 26 

(915; 1,00%). 

For arrivals, 130 gate and runway threshold combinations 

were identified, with gate 04 standing out, recording 2.644 landings 

(2,87%) when combined with runway 17R. Additionally, 

movements recorded at threshold 35L were analyzed, where gates 

04, 06, 11, 16, 22, and 26 had high traffic volumes. Gate 04 had the 

highest number of recorded landings, with 1.753 arrivals (1,90%), 

followed by gates 06 (1.726; 1,87%), 11 (1.608; 1,74%), 16 (1.005; 

1,09%), 21 (910; 0,98%), and 26 (843; 0,91%). 

 

 
Figure 20: Combination of gate and runway 17R for KPI 02. 

Source: Authors, (2025). 

Figure 20 presents the analysis of Unimpeded Taxi-Out 

Times for each gate and runway threshold combination, revealing 

statistically significant differences for gates 05, 06, 11, 16, 22, and 

26 when compared to runway threshold 17R. 

 

 
Figure 21: Combination of gate and runway 35L for KPI 02. 

Source: Authors, (2025). 

Figure 21 presented the combinations among the six groups, 

highlighting significant differences. In other words, variations 

were observed in the medians of the Unimpeded Taxi-Out Times 

for gates 04, 06, 11, 16, 22, and 26 at runway threshold 35L. 

 

 
Figure 22: Combination of gate and runway 17R for KPI 13. 

Source: Authors, (2025). 

Figure 22 shows the combination of gate and runway 

threshold, revealing significant differences in the medians of gates 

05, 06, 11, 16, 21, and 26 at runway threshold 17R. Except for the 

comparison between gates 04 and 06, where no significant 

difference was observed, all other combinations exhibited 

substantial variations in taxi times, with p-values below 0,001 in 

all comparisons. 

Figure 23 presents the combinations of gate and runway 

threshold 35L, highlighting gates 04, 06, 11, 16, 22, and 26. 

Statistically significant differences were found among the medians. 

The only exception was observed between gates 04 and 16, 

where no significant difference was found (p = 1.00). For all other 

comparisons, p-values were below 0,001, indicating highly 

significant differences and reinforcing the heterogeneity in taxi 

times among the analyzed groups. 

 

 
Figure 23: Combination of gate and runway 35R for KPI 13. 

Source: Authors, (2025). 

Campinas Airport (SBKP) has a single runway for landing 

and takeoff operations (15/33, Figure 24). 

For takeoff operations, runway threshold 15 was the most 

utilized, accounting for 69,61% of the total (41.430 movements), 

while threshold 33 recorded 30,39% (18.088 movements). 

Similarly, threshold 15 predominated for landing operations, with 

68,75% of movements (41.069 records). 
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These data highlight a clear operational preference for 

runway threshold 15 for landings and takeoffs, emphasizing its 

importance in the distribution of air traffic flows. 

 

 
Figure 24: SBKP Airport Chart. 

Source: Adapted from [39], (2025). 

 

SBKP identified 177 gate and runway threshold 

combinations for takeoffs, with gate C02 standing out, recording 

1.732 departures (2,91%) when combined with runway 15. 

For threshold 33, gates B02, B13A, C02, M5, R7, and R9 

were analyzed as they had the highest traffic volumes. Gate C02 

led with 757 recorded takeoffs (1,27%), followed by B02 (631; 

1,06%), B13A (293; 0,49%), M5 (139; 0,23%), R7 (129; 0,22%), 

and R9 (89; 0,15%). 

For arrivals, 184 gate and runway threshold combinations 

were identified, with gate B02 standing out, recording 1.501 

landings (2,51%) when combined with runway 15. 

Similarly, gate and threshold combinations for runway 33 

were analyzed, selecting gates B11, C04, C05, M5, R7, and T04, 

which had the highest traffic volumes. Gate C04 had the highest 

number of recorded movements, with 776 operations (1,30%), 

followed by C05 (661; 1,10%), B11 (290; 0,48%), R7 (136; 

0,23%), M5 (128; 0,21%), and T04 (28; 0,05%). 

Figure 25 reveals statistically significant variations in the 

medians of Unimpeded Taxi-Out Times for gates B02, B13A, C02, 

M5, R7, and R9 in relation to runway threshold 15. However, some 

differences among M5, R7, and R9 were not significant, as 

indicated by the p-values. 

 

 
Figure 25: Combination of gate and runway 15 for KPI 02. 

Source: Authors, (2025). 

Figure 26 revealed statistically significant differences in the 

medians of Unimpeded Taxi-In Times for gates T3, R8, M5, C06, 

B02, and B13A in relation to runway threshold 15. The only 

exception was the comparison between T3 and R8 (p = 0.85), 

which showed no relevant variation. 

Combinations involving M5, C06, B02, and B13A 

exhibited consistent differences among themselves, with p-values 

below 0,001, highlighting the variability in KPI 13 as a function of 

the gates and the runway threshold used. 

 

 
Figure 26: Combination of gate and runway 15 for KPI 13. 

Source: Authors, (2025). 

For Belém Airport (SBBE), the existence of two runways 

for landing and takeoff operations 06/24 and 02/20 was verified 

(Figure 27). 

It was verified that, for both takeoffs and landings, runway 

threshold 06 was the most utilized, accounting for 90,94% (13.064) 

and 92,28% (13.229) of movements, respectively. 

The analysis of gate and runway threshold combinations at 

Belém Airport (SBBE) identified 72 combinations for departures 

and 63 for arrivals, with aprons 3 and 4 concentrating 98,30% of 

departure movements (14.121 records in 2023). These aprons 

contain 12 gates, divided into six groups of two, represented by the 

gates with the highest traffic volumes. 

Gate 04 recorded 1.969 departures (13,71%) and gate 05 

had 1.959 departures (13,64%), both combined with runway 

threshold 06. For threshold 02, gates 02, 04, 05, 07, 08, and 12 had 

the highest departure volumes, with gate 04 leading (160 records; 

1,11%), followed by gates 05 (150; 1,04%), 02 (147; 1,02%), and 

12 (145; 1,01%). 

For arrivals (landings), gate 04 was also the busiest, with 

1.942 recorded landings (13,54%), followed by gate 05 (1.915; 

13,36%), both combined with runway threshold 06. For threshold 

02, gates 02, 04, 05, 07, 10, and 12 recorded the highest landing 

volumes, with gate 05 being the most utilized (163 records; 1,14%), 

followed by gates 04 (150; 1,05%) and 02 (134; 0,46%). 

The data indicate that gates 04 and 05 were the most active 

for both departures and arrivals, highlighting an operational 

concentration and a decreasing distribution among other gates, 

reflecting strategic traffic management patterns at SBBE. 
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Figure 27: SBBE Airport Chart. 

Source: Adapted from [39], (2025). 

 

Figure 28 presents the analysis of Unimpeded Taxi-Out 

Times for each gate and runway threshold combination, revealing 

statistically significant differences. 

Observing the combinations of gates 02, 04, 05, 07, 08, and 

12 with runway threshold 06, the differences in the medians of 

Unimpeded Taxi-Out Times were found to be highly significant, as 

indicated by the p-values. This result suggests that, for runway 

threshold 06, there are substantial variations in taxi times 

depending on the gate used, reflecting operational and logistical 

differences for each combination. 

 

 
Figure 28: Combination of gate and runway 06 for KPI 02. 

Source: Authors, (2025). 

Figure 29 presents the analysis of combinations among 

gates 02, 04, 05, 07, 08, and 12, considering runway threshold 06, 

revealing statistically significant differences in the medians of 

Unimpeded Taxi-Out Times in most comparisons. The exceptions 

were the combinations between gates 02 and 07, 04 and 07, 07 and 

08, and 08 and 12, which showed no statistically relevant 

variations. 

These results indicate that, although some combinations did 

not exhibit significant differences, Unimpeded Taxi-Out Times 

show substantial variations among the analyzed gates. Notably, 

gate 12 stood out for having the largest observed difference, 

suggesting a significant impact on operational efficiency 

depending on the configuration used. 

 

 
Figure 29: Combination of gate and runway 02 for KPI 02. 

Source: Authors, (2025). 

The analysis of runway threshold 02 revealed statistically 

significant differences among the median times of the analyzed 

gates, as shown in Figure 30. 

Comparisons between gates 02 and 04, 02 and 05, 02 and 

07, 02 and 10, and 02 and 12 presented p-values < 0.001, indicating 

significant variations in Unimpeded Taxi-In Times for these 

combinations. The only exception was the comparison between 

gates 10 and 12, which did not show a statistically significant 

difference. 

 

 
Figure 30: Combination of gate and runway 06 for KPI 13. 

Source: Authors, (2025). 

Figure 31 illustrates the runway threshold 02 combination, 

revealing statistically significant variations among gates 02, 04, 05, 

07, 10, and 12, except for comparisons between gates 04 and 12, 

and gates 07 and 10, which showed no relevant differences. 

 

 
Figure 31: Combination of gate and runway 02 for KPI 13. 

Source: Authors, (2025). 
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The results indicate that Taxi-In Unimpeded Times differ 

substantially among gate combinations, notably between gates 02 

and 10 (p < 0.001), and between gate 05 and other gates, 

demonstrating statistically significant differences.On the other 

hand, gates 04 and 12 showed similar taxi times, as did gates 07 

and 10, whose comparison yielded a p-value of 0,3988, suggesting 

comparable taxi-in times. At Manaus Airport (SBEG), there is a 

single runway (11/29) used for both landing and take-off operations 

(Figure 32). 
 

 
Figure 32: SBEG Airport Chart. 

Source: Adapted from [39], (2025). 

 

For departures, runway threshold 11 was the most 

frequently used, representing 94,49% of the operations (12.235 

movements), whereas runway threshold 29 accounted for only 

5,51% (714 movements). In landings, runway threshold 11 also 

predominated, accounting for 97,02% of operations (12.470 

movements), while runway threshold 29 was utilized in just 2,98% 

of cases (383 movements). These data indicate a strong operational 

preference for runway threshold 11, both for takeoffs and landings, 

possibly influenced by factors such as prevailing winds, airport 

infrastructure, and the established air traffic flow patterns. 

At SBEG, 67 combinations of gates and runway thresholds 

were identified for departures and 78 for arrivals. Apron 1 

concentrated 87,79% of departures (11.369 movements in 2023) 

and is configured with 18 gates divided into 6 groups of 3, each 

represented by the gate with the highest activity. The most 

frequently used combination for commercial flights was gate B18 

with runway threshold 11, totaling 1.764 departures (13,62%). In 

the analysis of operations using runway threshold 29, gates B18, 

E15, R20, R21, R23, and R26 were selected due to their higher 

traffic volumes. Gate R20 registered 121 movements (0,93%), 

followed by gates R21 (81; 0,63%), B18 (70; 0,54%), R23 (36; 

0,28%), E15 (31; 0.24%), and R26 (13; 0.10%). 

For arrivals (landings), 78 combinations of gates and 

runway thresholds were identified, notably gate B18, which 

received 1,774 landings (13,80%), followed by gates C17 (1.725; 

13,42%), R20 (1.052; 8,18%), R26 (600; 4,67%), F14 (485; 

3,77%), and R22 (268; 2,08%), all operating with runway threshold 

11. Similarly, for runway threshold 29, gates B18, C17, F14, R20, 

R22, and R25 were selected due to their higher landing volumes. 

Figure 33 shows gate-runway threshold combinations at 

SBEG, revealing statistically significant differences among gates 

A19, B18, E15, R21, R24, and R25 for runway threshold 11. 

Comparisons between gates A19 and B18 indicated statistically 

relevant differences (p < 0.001), suggesting distinct taxi times 

between these gates. The same pattern was observed for gate E15, 

which demonstrated significant variations compared to gates A19 

and B18. 

Significant differences were also identified in comparisons 

among gates R21, R24, and R25, all presenting extremely low p-

values (p < 0.001), reinforcing the substantial variation in taxi 

times across the analyzed gates. 
 

 
Figure 33: Combination of gate and runway 11 for KPI 02. 

Source: Authors, (2025). 

Figure 34 presents gate-runway threshold 29 combinations, 

revealing statistically significant differences. Comparisons 

indicated substantial variations among median unimpeded taxi-out 

times for gates B18, E15, R20, R21, R23, and R26. However, no 

significant differences were observed in the combinations between 

gates B18 and R23, B18 and R26, and E15 and R26, suggesting 

these gates have similar taxi times. 
 

 
Figure 34: Combination of gate and runway 29 for KPI 02. 

Source: Authors, (2025). 

Figure 35 shows the gate-runway threshold 11 

combinations, revealing statistically significant differences. 
 

 
Figure 35: Combination of gate and runway 11 for KPI 13. 

Source: Authors, (2025). 

Page 258



 
 
 

 

ITEGAM-JETIA, Manaus, v.11 n.52, p. 247-260, March./April., 2025. 

 

 

Gates B18, C17, F14, R20, R22, and R26 showed variations 

in median unimpeded taxi-in times, indicating distinct operational 

impacts among these combinations. However, no significant 

differences were observed in comparisons between gates B18 and 

F14, B18 and R26, C17 and R20, C17 and R22, F14 and R26, and 

R20 and R22, suggesting these gate pairs have similar taxi times. 

Finally, Figure 36 describes gate-runway threshold 29 

combinations, revealing statistically significant differences. Gates 

B18, C17, F14, R20, R22, and R25 showed variations in median 

unimpeded taxi-in times, indicating operational discrepancies 

among these combinations. However, no significant differences 

were observed in comparisons between gates B18 and F14, B18 

and R20, C17 and R25, and R20 and R22, suggesting similar taxi 

times among these gate pairs. 

 

 
Figure 36: Combinação de Gate e Runway 29 para KPI 13. 

Source: Authors, (2025). 

V. CONCLUSIONS 

 

The assessment of key performance indicators of the 

Brazilian Airspace Control System (SISCEAB) was essential to 

this study. It highlighted that out of the 19 KPIs and 7 IDBRs 

described in MCA 100-22, only 10 KPIs and 1 IDBR are currently 

monitored by DECEA. 

An analysis of data sources (TATIC FLOW, BIMTRA, and 

VRA) revealed significant discrepancies in the records, 

underscoring the necessity for an integrated approach to enhance 

the accuracy of KPI 02 and KPI 13. 

The selection of data sources directly influences the 

reliability of indicators, while operational and environmental 

factors may impact taxi time variability. 

The analysis found that BIMTRA and VRA provide greater 

representativeness and accuracy in calculations despite their 

inherent limitations. 

The study revealed an overall efficiency of 0,35% for KPI 

02 and 207% for KPI 13. When examining KPI 02 individually, the 

airport combinations displayed similar efficiencies, except for 

SBEG, which notably achieved 3,15%. Regarding KPI 13, the 

efficiency results varied considerably across airports: SBGR had 

an efficiency of 163%, SBSP reached 298%, SBKP recorded 

453%, SBBE obtained 92%, and SBEG stood out significantly at 

800%. 

The optimal data source combination for KPI 02 includes 

take-off time (ATOT) from BIMTRA and gate departure (AOBT) 

from VRA, whereas for KPI 13, gate arrival time (AIBT) from 

VRA and landing time (ALDT) from BIMTRA proved to be most 

effective. 

Therefore, integrating these data sources enables more 

accurate and reliable measurements, optimizing air traffic 

management, reducing congestion, and improving operational 

efficiency, particularly at high-flow airports.  

It is recommended to use these databases jointly as the most 

effective strategy for enhancing KPI 02 and KPI 13, thus 

contributing to more efficient and secure airport operations 

management. 

 

VI. AUTHOR’S CONTRIBUTION 

 

Conceptualization: Alessandro Soares de Freitas, Edilson 

Marques Magalhaes 

Methodology: Alessandro Soares de Freitas, Edilson Marques 

Magalhaes 

Investigation: Alessandro Soares de Freitas, Edilson Marques 

Magalhaes 

Discussion of results: Alessandro Soares de Freitas, Edilson 

Marques Magalhaes 

Writing – Original Draft: Alessandro Soares de Freitas, Edilson 

Marques Magalhaes 

Writing – Review and Editing: Alessandro Soares de Freitas, 

Edilson Marques Magalhaes 

Supervision: Alessandro Soares de Freitas, Edilson Marques 

Magalhaes 

Approval of the final text: Alessandro Soares de Freitas, Edilson 

Marques Magalhaes 

 

VII. ACKNOWLEDGMENTS 

 

The authors sincerely express their deepest gratitude and 

appreciation to the department, institution, and all individuals 

whose support and contributions were instrumental in the 

successful completion of this study. 

 

VIII. REFERENCES 

 
[1] NSCA 351-1, Brazilian Air Force Command System Standard: Brazilian 

Airspace Control System (SISCEAB). Rio de Janeiro: DECEA, 2024. 

 

[2] A. D. Silva et al., “ATM performance report of the Airspace Control System 

(SISCEAB),” DECEA, 2019. 

 

[3] ANAC, “Air Transport Yearbook.” in National Civil Aviation Agency. Air 

Transport Indicators Panel 2022, ANAC, 2024. 

 

[4] DCA 351-7, Air Force Command Guideline: Guideline for Airspace Control, 

DECEA, Rio de Janeiro, Brazil, 2025. 
 
[5] DCA 100-2, Guideline of the Air Force Command: Flexible Use of Airspace, 

DECEA, Rio de Janeiro, Brazil, 2017. 

 

[6] Aeroespaço, Special Edition commemorating the 10th anniversary of CGNA, 

DECEA, Rio de Janeiro, Brazil, Dec. 2017. 

 
[7] DCA 351-2, Guideline of the Air Force Command: National ATM Operational 

Concept, DECEA, Rio de Janeiro, Brazil, 2021. 

[8] ICA 100-22, Instruction of the Air Force Command: Air Traffic Service, 

DECEA, Rio de Janeiro, Brazil, 2023. 

[9] L. P. Oliveira, “System for optimizing Brazilian air traffic management with the 

Collaborative Trajectory Options Program,” Undergraduate Thesis, University of 

Brasília (UNB), Brasília, Brazil, 2018. 

[10] P. C. F. Barbosa, Imbalance of aerodrome runway capacities: A calculation 

for obtaining the maximum per type of operation, M.S. thesis, Professional Master’s 

Program in National Network Mathematics, Graduate Studies, Research, Extension, 

and Culture Office, Pedro II College, Rio de Janeiro, Brazil, 2021.  

Page 259



 
 
 

 

ITEGAM-JETIA, Manaus, v.11 n.52, p. 247-260, March./April., 2025. 

 

 

[11] R. Tezza, A. C. Bornia, and I. H. Vey, “Performance measurement systems: A 

review and classification of the literature,” Management & Production, vol. 17, pp. 

75–93, 2010.  

[12] A. C. Fernandes, “Analysis and forecasting of Brazilian air traffic performance 

indicators,” Undergraduate Thesis, Aeronautics Institute of Technology, São José 

dos Campos, Brazil, 2022.  

[13] DECEA, “ATM performance report of the Airspace Control System 

(SISCEAB),” DECEA, 2023. 

[14] DECEA, “ATM performance report of the Airspace Control System 

(SISCEAB),” DECEA, 2024. 

[15] A. C. R. A. Duarte, “Implementation of operational safety indicators in Cape 

Verde aviation,” M.S. thesis, Master’s Program in Air Transport Operations, Higher 

Institute of Education and Sciences, Lisbon, Portugal, 2023. 

[16] O. T. Muniz, Performance Management, 1st. Rio de Janeiro, Brazil: SESES, 

2016. 

[17] P. M. Jannuzzi, Social Indicators in Brazil, 6th. ed. Campinas, Brazil: Alínea 

Publishing, 2017. 

[18] L.O. Bahia, Reference guide for the construction and analysis of indicators, 1st 

ed. Brasília, Brazil: ENAP, 2021. 

[19] R. B. Santana and V. A. G. Zanoni, “Brazilian housing indicators: comparative 

analysis of the historical series 1995-2018,” Cadernos Metrópole, vol. 24, no. 53, 

pp. 409–428, 2022. 

[20] H. O. Gomes et al., “The impact of Embraer's intellectual property assets 

indicators on strategic decision-making for the company,” Peer Review, vol. 5, no. 

5, pp. 353–365, 2023. 

[21] A. C. Fernandes, “Analysis and forecasting of Brazilian air traffic performance 

indicators,” Undergraduate Thesis, Aeronautics Institute of Technology, São José 

dos Campos, Brazil, 2022. 

[22] B. Bubalo, Airport Capacity and Performance in Europe: A Study of Transport 

Economics, Service Quality and Sustainability, Ph.D. dissertation, Department of 

Economics, University of Hamburg, Hamburg, Germany, 2021. 

[23] Francischini, A. S. N., and Francischini, P. G. Performance Indicators. 1st ed. 

Rio de Janeiro, Brazil: Alta Books, 2017. 

[24] A. W. Dougall and M. Mmola, “Indentification of key performance áreas in 

the Southern African surface mining delivery environment”. Journal of the Southern 

African Institute of Mining and Metalurgy, V. 115, n. 111, pp. 1001-1006, 2015. 
 

[25] P. Gackowiec et al. “Review of Key Performance Indicators for Process 

Monitoring in the Mining Industry.” Energies, V. 13, n. 20, pp. 30-59, 2020. 

[26] R. Domigues et al., “Key performance indicators in marketing,” Iberian 

Journal of Information Systems and Technologies, no. E35, pp. 128–140, 2020.  

 

[27] F. R. M. S. Montenegro and A. L. C. Callado, “Contingency factors and the 

use of performance indicators associated with the Balanced Scorecard 

perspectives,” Revista Gestão Organizacional, vol. 12, no. 1, pp. 73–91, 2019. 

 

[28] ICAO, Global Air Navigation Plan (GANP), 7th ed. Montreal, Canada: ICAO, 

2021. 

 

[29] R. L. Pereira, “Management of the methodology for air traffic controllers' shift 

scheduling: a perspective based on EUROCONTROL concepts,” M.S. thesis, 

Graduate Program in International Security and Defense, Superior War College, Rio 

de Janeiro, Brazil, 2022. 

 

[30] M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto for 

Business Revolution, New York, NY, USA: HarperCollins Publishers, 1993. 

 

[31] T. H. Davenport, Process Reengineering: How to Innovate in the Company T

hrough Information Technology, 4th ed. Rio de Janeiro, Brazil: Campus, 1994. 

 

[32] M. Imai, Kaizen: The Path of Continuous Improvement, Sa˜o Paulo, Brazil: 

McGraw-Hill, 1986. 

 

[33] J. Tidd and J. Bessant, Innovation and Business Process Management, 5th ed.

, Porto Alegre, Brazil: Bookman, 2015. 

 
[34] J. Jeston and J. Nelis, Business Process Management: Practical Guidelines to 

Successful Implementations, 5th ed. Abingdon, UK: Routledge, 2018. 

 

[35] P. Harmon, Business Process Change: A Guide for Business Managers and 

BPM and Six Sigma Professionals, 2ª ed., Burlington, MA: Morgan Kaufmann, 

2010. 

 
[36] W. van der Aalst, Process Mining: Data Science in Action, 2nd ed. Heidelberg, 

Germany: Springer, 2016. 

 

[37] MCA 100-22, Air Force Command Manual: ATM Indicators Methodology of 

SISCEAB. Rio de Janeiro, Brazil: DECEA, 2020. 

 

[38] PCA 100-3, Brazilian Air Force Command Plan: ATM Performance Plan. 

DECEA, Rio de Janeiro, Brazil, 2024. 
 

[39] Adapted from SBGR ADC Chart (AISWEB), (2024). 

file:///C:/Users/LAB%2020%20ITEGAM/Downloads/sbgr_adc-

sbgr_adc_20240905.pdf 

Page 260


