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Crowds are essential in daily activities, performing as dynamic systems of human 

interaction. They involve numerous individuals collecting in specified locations for diverse 

activities, whether in urban environments, public events, or social interactions. In virtual 

environments, animated crowds frequently display repetitive behaviors and a deficiency in 

movement diversity, leading to unrealistic simulations. It is imperative to provide 

distinctive and diverse actions for each character, avoiding visual duplication to augment 

realism. This paper introduces a method to enhance crowd variety by ensuring distinct and 

realistic character movements. We propose providing various motion types to prevent the 

duplication of cloned characters. Our approach creates a set of animations and utilizes 

techniques to control character velocity, ensuring distinctive and convincing movements. 

Furthermore, we present collision prevention methods based on Newton's Laws, the 

conservation of momentum, and the laws of kinetic energy. Ray-casting determines 

collision velocities by considering each character's mass and velocity without external 

forces. We implement a hybrid pool object approach and occlusion culling techniques to 

optimize real-time performance, increasing FPS (framed per second) and reducing 

computational load. These experiments evaluate the efficacy of our technique under 

different conditions. The results demonstrate the method's effectiveness and flexibility in 

dynamic environments. 
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I. INTRODUCTION 

 

A virtual crowd involves individual virtual entities that 

reflect behaviours identical to those of their adjacent neighbours, 

each possessing distinct actions and properties. Animators 

categorize the crowd into numerous entities and regulate the 

crowd's collective behaviours, the groups' movements, and the 

conduct of each virtual entity. Monitoring identical characters 

performing the same behaviour makes it feasible to regulate 

crowd movement, navigate around obstacles, and facilitate 

interactions with 3D characters or virtual humans.  

Real-time crowd simulation is a technique for animating 

the movement of large groups of characters within a virtual 

environment. As the crowd moves, each character dynamically 

interacts with others based on predefined behaviours, such as 

avoiding collisions or navigating obstacles. These interactions are 

defined by algorithms that adjust character paths to maintain 

personal space, avoid obstructions, and respond to environmental 

changes. It results in an evolving, natural collective behaviour that 

unfolds in real time, allowing characters to react continuously to 

their surroundings and each other. The challenge lies in executing 

these processes instantly, ensuring fluid and realistic movement in 

virtual settings like games and simulations. 
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Our crowd animation technique produces distinct 

locomotion cycles for each character, creating diverse movements 

that enhance realism and complexity within the scene. Beyond 

movement variation, we introduce a technique to prevent 

character collisions, ensuring smooth and natural interactions 

among individuals in the crowd. Our approach is based on 

Newton's laws of motion, incorporating principles of momentum 

and kinetic energy conservation under the assumption of no 

external forces. By applying these physical principles, our method 

accurately computes the final velocities of characters after 

interactions, maintaining realistic and natural movement. 

This integration of dynamic animation and collision 

avoidance leads to a more immersive and cohesive crowd 

simulation, making character behaviour more believable in 

complex virtual environments. Motion has a significant role in 

capturing crowds' diversity since virtual characters' physical 

appearance is often limited. To address this, many researchers 

have developed animation methods. For example, one study [1] 

aims to minimize memory usage while generating and animating 

various crowd characters. 

This approach involves two main steps: first, simplifying 

and segmenting virtual character data into essential body parts; 

second, integrating installation and peeling information into a 

shared texture space for the new characters. Rigging and skinning 

data are incorporated into global textures through UV 

parameterization, allowing all created characters to share a single 

set of rigging and skinning textures for each gender or age variant 

(male, female, child). It reduces memory for efficient large-scale 

crowd simulations but may introduce artefacts, impacting 

animation quality and crowd smoothness [1].  

The study in [2] includes different approaches to improve 

crowd simulation in important areas. It utilizes a multi-domain 

planning method and uses steps instead of depending exclusively 

on the speeds and placements of the character roots. The 

animation focuses on frame-based solutions to avoid foot-sliding 

artefacts and synthesizes character movements to ensure they 

follow the provided paths. In addition, the research introduces a 

distinctive rendering method based on joint impostors, which is 

validated by the results of validation experiments. The authors in 

[3] introduces a data-driven optimization strategy for dynamically 

adjusting individual agent velocities in response to real-world 

crowd movement patterns. It improves the realism of the 

simulated pedestrian behaviours. 

The study in [4] focuses on minimizing memory usage and 

optimizing the rendering step using two complementing 

architectures. The first is a skeleton linked to octrees for each 

limb, which determines the amount of detail for geometry and 

animation. The second structure is scene tiling, which determines 

the level of detail required for geometry, animation, and character 

behaviour. A quad-tree is constructed on top of this tiling to 

improve rendering optimization, allowing geometry from many 

characters to be combined in locations away from the camera. 

Furthermore, this tiling functions as an evaluating mechanism, 

increasing the effectiveness of collision avoidance calculations.  

The method presented in [5] uses Gaussian Process 

Dynamical Models to generate probabilistic low-dimensional 

poses for motion. Sampling trajectories through Monte Carlo 

Markov Chains creates infinite motion variants, including blended 

versions, without costly non-linear interpolation in the mesh 

domain. This approach allows for the efficient generation of 

diverse and realistic motion variations, offering animation 

flexibility while maintaining computational efficiency. The ability 

to generate such diverse movements without the overhead of 

complex interpolation techniques makes it a valuable tool for 

realistic and dynamic motion synthesis in various applications. 

The output variations generated by the method in [5] remain 

relatively similar to the input movements while allowing for 

changes in poses and timings. 

 The goal is to create infinite variations for each blended 

motion using a motion parameterization approach. This approach 

provides control for customizing motion and simulations, but 

parameterizing motion capture and controlling variations can be 

complex and less effective for complex movements. 

In addition, to create a diversified heterogeneous crowd, 

[6] presents a multi-agent reinforcement learning-based method 

that incorporates a variety of input settings. This approach 

demonstrates generalized crowd navigation, allowing for the 

simulation of diverse individual behaviours within the crowd. The 

system can account for complex agent interactions by utilizing 

reinforcement learning, generating realistic and dynamic crowd 

movements. This method enhances the ability to simulate large 

crowds with varying characteristics, ensuring a more natural 

representation of human behaviour in crowded environments. 

These techniques benefit applications in gaming, virtual reality, 

and crowd management simulations, where realistic and diverse 

animations are necessary. 

The study in [7] presents a local collision avoidance 

algorithm for uncrewed surface vehicles (USVs) based on the 

International Regulations for Preventing Collisions at Sea 

(COLREGs). The algorithm is divided into three main sections: 

collision risk assessment, which evaluates the potential for 

collisions; steering occasion determination, which identifies the 

need for course adjustments; and navigation waypoint updates, 

which modify the vehicle's path to avoid obstacles. This approach 

ensures safe navigation for USVs in complex environments by 

considering real-time collision risks and applying the rules of 

maritime navigation to maintain safe distances from other vessels 

and obstacles. 

The algorithm uses the closest point of approach (CPA) 

method to evaluate collision risk within an analytically defined 

angle range, assessing potential threats from other vessels or 

obstacles. The steering occasion determination calculates a 

supplemental steering angular velocity, allowing the USV to 

adjust its course and maintain a safe distance. The navigation 

waypoint update generates temporary waypoints, ensuring 

compliance with COLREGs for safe passing and crossing 

situations. Finite state machines (FSMs) control these three 

components, coordinating the decision-making process. This 

method guarantees adherence to COLREGs, reduces collision 

risks, manages dynamic situations, and enhances USV efficiency.  

Nevertheless, incorporating COLREGs may elevate 

computational requirements, thus affecting performance. 

Moreover, environmental factors limit the algorithm's practical 

application. In contrast, [8] used a rule-based Bayesian Network 

approach to model collision issues for ships and marine 

structures. This method offers clear reasoning and high visibility, 

making it easier to understand the decision-making process while 

providing stability in the system's behaviour. 

However, it may lead to uncertain or inconsistent ship 

behaviour due to the inherent conditions required for state 

transitions. For example, conflicts can arise between the 

triggering situations for specific behaviours, which may result in 

unexpected or incorrect decisions. These conflicts can cause 

system failures or degrade the algorithm's reliability, especially 

when dealing with complex or dynamic maritime scenarios. 

Additionally, the algorithm's ability to handle intricate situations 
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is limited, which affects its overall performance in real-world 

applications. The challenge of analyzing and resolving these 

complicated scenarios means that while intuitive and 

interpretable, the rule-based approach may not always be the most 

effective solution in dynamic environments where rapid and 

flexible decision-making is required [9],[10]. As a result, 

alternative approaches or hybrid systems might be necessary to 

improve robustness and adaptability in collision avoidance 

algorithms for maritime navigation. 

The authors in [11] proposed an innovative approach for 

modelling agent movements in crowd simulations with deep 

reinforcement learning (DRL). Based on environmental 

awareness, this technique emphasizes the development of agents' 

navigation strategies, including locomotion and obstacle 

avoidance. This research substantially advances the field by 

establishing a parametric framework for developing crowd 

simulation environments, thus allowing performance evaluation 

across numerous scenarios. 

The authors of [12] present the CrowdMoGen framework 

employs a dual-phase approach for generating crowd motion 

based on text input. The Crowd Scene Planner employs a Large 

Language Model (LLM) to analyze textual descriptions and 

generate motion plans, specifying both semantic (activities) and 

spatial (trajectories) characteristics. 

The Collective Motion Generator employs a diffusion-

based model, incorporating InputMixing and Control Attention 

approaches, to synthesize character movements that realistically 

conform to intended dynamics. This method facilitates zero-shot 

motion generation, obviating the necessity for paired training 

data. Consequently, CrowdMoGen improves adaptability and 

authenticity in crowd animation. 

In this paper [13], authors proposed an approach 

incorporates Anisotropic Fields (AFs) to address the limitations of 

replicating homogenous behaviors. By capturing the uncertainty 

and variability in crowd motions, it enhances realism and 

behavioral diversity in simulations. The produced AFs are 

integrated into the crowd simulation engine, influencing agent 

decision-making processes. The method examines video data in 

real crowds to identify movement patterns and transform them 

into AFs. This approach involves capturing individual motions 

and calculating local directional preferences to create AFs that 

represent observed behaviors. 

This paper addresses a significant challenge in real-time 

crowd simulation: preventing unintended character movements in 

virtual environments and optimizing real-time performance by 

combining the pooling and culling algorithms to improve the 

efficiency and quality of interactive models. We aim to ensure 

consistent frame rates, reduce the computational load of hardware 

(CPU, GPU and memory), and ensure precise navigation for 

realistic interactions while maintaining movement within a 

reasonable range of animations. 

This approach improves visual realism and ensures a more 

convincing crowd simulation experience. We apply Newton's 

laws of motion, momentum, and kinetic energy to improve 

collision detection and avoidance. By estimating and modifying 

character movement in real-time, we can prevent collisions while 

maintaining physical realism, resulting in smoother, more realistic 

character interactions and a more realistic virtual environment. 

This approach ensures that characters move and interact in a way 

consistent with the laws of physics, contributing to an immersive 

simulation. 

 

 

II. MODELING VIRTUAL HUMAN ANIMATION 

Simulating different crowds is important for real-time 

applications such as games, animated films, and navigation 

systems. These applications benefit from added features and 

details that improve the visual quality of the virtual environment 

and its elements, thereby enhancing the overall realism and 

performance of the system. It is essential to explore how 

animation variation and collision avoidance can generate a range 

of motions by creating unique movements for each character 

model, improving FPS (frames per second) stability by reducing 

the rendering load and making the FPS calculations consistent. 

This approach allows for the production of diverse animations, 

ensuring each character moves in its distinct way. Applying 

animation diversity is crucial in creating a crowd that highlights 

each character’s individuality, contributing to a more dynamic 

and realistic crowd simulation (see Figure 1). 

 
Figure 1: Animation and collision avoidance approach in crowd 

simulation. 

Source: Authors, (2025). 

 

II.1 ANIMATION APPROACH 

We utilise an animator controller and scripting to create 

diverse and unique movements for our models. The animator 

controller efficiently manages and blends multiple animations. At 

the same time, scripting allows us to activate animations based on 

specific conditions or user interactions, giving each model its 

personality and individuality. This approach ensures that our 

models move realistically and interactively, enabling walking, 

running, jumping, turning, and idling (see Figure 2). 

We developed a collection of animated clips and 

integrated them with scripting in the animator component to 

achieve this. This setup triggers animations based on defined 

conditions or user inputs, ensuring fluid and lifelike character 

behaviours. We efficiently assign and control various movement 

patterns by constructing multiple animations with distinct 

attributes and motions. Additionally, we enhance diversity by 

seamlessly blending animations, resulting in more dynamic and 

natural motion transitions. Our animation system is enhanced by 

C# scripting, ensuring accurate animation behaviours while 

preserving clarity and flexibility. Through custom scripting 

algorithms, we introduce realistic variations in motion. A key 

aspect of this process involves dynamically generating velocity 
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values to regulate animation speed, ensuring smooth transitions 

between different movements. These velocity-based transitions 

create a seamless animation flow, enhancing realism and 

immersion. We initially position models randomly in different 

directions to ensure a varied animation cycle for different virtual 

characters. Each model is assigned a unique animation type with 

specific speed parameters and the ability to jump to a certain 

height. These techniques generate diverse locomotion cycles, 

resulting in more visually realistic crowd movement.  

 

 

Figure 2: Animation and collision avoidance approach in crowd 

simulation. Employing a variety of animation styles for different 

models, each with its own speed. 

Source: Authors, (2025). 

 

II.2 MOVEMENT PATH VISUALIZATION 

Creating a unique animation style for characters in a 

virtual world or interactive environment is crucial for defining 

their personalities and improving the fluidity of their movements. 

Blending various animations with controlled movement along 

predefined paths allows characters to be represented distinctly and 

dynamically. This method ensures that each character moves 

uniquely, engaging and consistent with their role in the virtual 

world, which adds depth and realism to the overall experience. 

We explore a strategy demonstrating how our crowd can 

distinguish its animation style. 

Algorithm: Character animation with paths 

Input:   character, movement, velocity, position list of 

points. 

Output: a path to follow. 

- Determinate the initial position of the path 

- Determinate the destination position of the path 

- Determinate the movement. 

- Determinate the velocity 

- Determinate the path 

- Following the path           

 
Figure 3:Various animations with different speeds to follow the 

path sequence. 

Source: Authors, (2025). 

It includes animating characters with diverse movements 

and controlling their speed along a specified path. In our 

environment, we set a starting point and a final destination for 

each character, guiding them through a path to reach their goal 

effectively. A key aspect of this strategy is using varied motion 

styles to reflect the characters' personalities and actions. These 

styles encompass a range of movements, including idle states, 

walking, strolling with a briefcase, performing a feminine gait, a 

unique older man's walk, walking with joy, rhythmic hip-hop 

dancing, texting while walking, and running. Each motion style 

adds depth and individuality to the characters, ensuring they are 

dynamic and realistic in different situations, ultimately enhancing 

engagement and realism within the virtual environment (see 

Figure 3). 

In addition to animation variation, controlling the 

movement speed and path traversal is another critical factor. Each 

model is defined to perform particular types of movement and can 

change how it moves along a predetermined path. The animation 

is controlled by a speed parameter ranging from 1 to 50 (m/s). 

These speed decisions are precisely selected to ensure the 

movement appears realistic and visually appealing, enhancing the 

overall sense of motion within the defined parameters. As a result, 

each character's movement feels distinct, representing their 

characteristics and activities. A character's movement speed may 

also reflect its emotional condition and give additional depth to 

the animation. We ensure that each character moves effortlessly 

and naturally by blending different animations with varying 

movement speeds. The variations in speed and animation styles 

emphasize their individuality, making their behaviours more 

noticeable.  

 

 
Figure 4: Enhancing visual animation diversity across 

various templates in an urban context. 

Source: Authors, (2025). 

 

 

-Random positions 

-Random directions 

-Different types of animations 

-Different speeds of animations 
-Different heights jump. 
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This method not only improves the visual dynamic of the 

environment but also enhances transmitting emotions and 

intentions through character movements and animations (see 

Figure 4). 

 

II.3 CROWD COLLISION DETECTION APPROACH 

We present a comprehensive description of our approach, 

which aims to improve and achieve realistic results in collision 

avoidance within crowds. Collision avoidance is a critical 

challenge in crowd simulation, as it ensures individuals within the 

environment move without unrealistic interactions. Addressing 

this issue is essential for creating an efficient crowd system. 

Many researchers have proposed various methods to implement 

collision avoidance behaviour in crowd simulations.  

The algorithm used is based on a technique called 

Raycasting, Newton's Laws, along with the principles of 

momentum and kinetic energy conservation for collision 

detection and possibly for determining visibility or field of view: 

• Raycasting Basics: It estimates the intersection between 

our models during their movements from the projection of the 

current character's position to the other character. It involves 

casting a ray (a straight line) from a specific point (often a 

character's position) in a particular direction (e.g., direction of 

movement or field of view). The ray continues until it intersects 

with an object in the scene or reaches a maximum distance.  

• Collision Detection: Raycasting is a technique used in 

character movement to detect collisions with nearby objects. 

When a character moves forward, a ray is cast in the direction of 

movement. This ray checks for obstacles within its path, such as 

objects or other characters. If the ray intersects with an object, it 

indicates a potential collision, allowing the game to respond 

appropriately by stopping the character or adjusting its 

movement. This method is efficient for real-time environments, 

enabling accurate collision detection without complex geometry 

calculations. 

• Field of View Representation: Raycasting can also assess 

what is visible from a character's perspective. By casting rays in 

several directions within a defined field of view, we can 

determine which objects or entities fall within that area and are 

visible to the character. Based on this information, we calculate 

the mass and initial speed (e.g., WalkSpeed, RunSpeed) to apply 

to the character's movement. 

• Collided characters:  The raycasting method determines 

if characters have collided after a set number of time steps. It 

calculates the distance between them, considers their masses and 

velocities, and selects the faster character. By casting rays along 

the movement path, the method checks for potential collisions. If 

a collision is detected, the model can adjust the characters' 

positions or velocities based on their masses and speeds, ensuring 

realistic interaction and response to obstacles or other characters. 

• We applied Newton's Laws, along with the principles of 

momentum and kinetic energy conservation, to model the 

dynamics of motion and calculate the final velocities and 

direction changes for each character during collisions. These 

physical laws govern the interactions between objects and are 

essential for accurately simulating realistic motion. The 

conservation of momentum ensures that the total momentum 

before and after a collision remains constant, while kinetic energy 

conservation applies to elastic collisions where no energy is lost.  

These principles apply without external forces, allowing us 

to predict the results of character collisions with high accuracy 

and realism. 

Where, 𝑝1, 𝐾1, 𝑝2, 𝐾2, 𝑝′1, 𝐾′1, 𝑝′2  and 𝐾′2  are the momentum 

and kinetic energy of character 1 and character 2 before and after 

the collision, respectively [14]. 

Table 1: Determination of the final velocity of the 

characters after the sensing collision by the raycasting technique, 

Newton's laws, the concepts of momentum and conservation of 

kinetic energy. 

Scenarios 

Various 

mass and 

velocity 

cases. 

The velocities 

at the time of 

collision. 

Final velocities 

after collision 

detection. 

Scenario1 

M >> m 

And 

VM>Vm 

𝑣′
𝑀

=  
𝑣𝑀 (𝑀 − 𝑚)

𝑀 + 𝑚
 

 

𝑣′
𝑚 =  

2𝑀 ∗ 𝑣𝑀

𝑀 + 𝑚
 

 

𝑣′
𝑀 =  𝑣𝑀 

𝑣′𝑚 = 2 𝑣𝑀 

Scenario2 

M = m 

And 

VM ≠ Vm 

𝑣′
𝑀 =  0 

𝑣′𝑚 =  𝑣𝑀 

Scenario3 

M>m 

And 

VM<Vm 

 

𝑣′
𝑀=𝑣′

𝑀 

𝑣′
𝑚=𝑣′

𝑚 

 

 

𝑣′
𝑀 =  𝑣′

𝑀 

𝑣′𝑚 =  𝑣′𝑚 

Scenario4 

M=m 

And 

VM=Vm 

𝑣′
𝑀 =  𝑣′

𝑀 

𝑣′𝑚 =  𝑣′𝑚 

Source: Authors, (2025). 

𝑝1 + 𝑝2 = 𝑝′1 + 𝑝′2 = 𝑐𝑡𝑒                      (1) 

 
                 𝐾1 + 𝐾2 = 𝐾′1 + 𝐾′2 = 𝑐𝑡𝑒                  (2) 

 

When our two characters collided at two different 

velocities, 𝑣𝑀 and 𝑣𝑚 and two different masses, 𝑀 for the heavier 

object and 𝑚 for the lesser one, along with the sum of the two 

momenta, the sum of the two kinetic energies is conserved in 

elastic collisions.  

The two conservation equations are written as follows: 

 

      𝑀𝑣𝑀
2

2
1 + 𝑚𝑣𝑚

2
2
1  = 𝑀𝑣𝑀

′2
2
1 + 𝑚𝑣𝑚 

′2
2
1           (3) 

 

𝑀𝑣𝑀 + 𝑚𝑣𝑚  = 𝑀𝑣′𝑀 + 𝑚𝑣′𝑚                (4) 

 

Where the final velocities of both objects 𝑣′𝑀, and 𝑣′𝑚  are 

given. The sums of the velocities before and after the collision for 

each object are equal when the two equations are rearranged with 

the velocities of one object on one side of Eq. (3) and Eq. (4) and 

those of the other on the opposite side, then dividing the 

rearranged Eq. (3) with the rearranged Eq. (4) [14].  

𝑣𝑀 + 𝑣′𝑀  = 𝑣𝑚 + 𝑣′𝑚                        (5) 

The ultimate velocities following the collision are 

determined by solving the set of linear Eq. (4) and Eq. (5): 

𝑣′𝑀 =
(𝑀−𝑚)𝑣𝑀+2𝑚𝑣𝑚

𝑀+𝑚
                         (6) 

𝑣′𝑚 =
(𝑚−𝑀)𝑣𝑀+2𝑀𝑣𝑀

𝑀+𝑚
                            (7) 

Depending on the values of m and M for our colliding 

characters in Eq. (4) and Eq. (5), we disregard the smallest value 

and get the final velocities  𝑣′𝑀and 𝑣′𝑚  (Table 1). We derive a 

valid method for collisions from Newton’s Laws, the laws of 
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momentum, and kinetic energy conservation. It provides a way to 

determine the final velocities after detection collision using the 

Raycasting technique without external net forces, according to 

each character’s initial masse and velocity (see Figure 5). In the 

second scenario, when the masses are equal, the final velocity of 

this character will be reduced to a small value for some seconds. 

At this time, the second character will change its direction and 

take the velocity of the first character to move. After steps of 

seconds, both of them will take their first velocity. To ensure that 

we examine all possible conditional cases that could occur 

between characters, we have added two additional cases based on 

the same previous data. In these two situations, the end velocity 

used to predict the occurrence of a collision is the same as the 

initial velocity of the two characters before the collision. 

 
Figure 5: Examples of two cases of collision 

Source: Authors, (2025). 

Perception with no collision of the first Scenario. (b) 

Final velocities are determined according to the initial different 

velocities and masses of characters by Newton’s Laws, as well as 

the concepts of momentum and kinetic energy conservation after 

detection collision by the Raycasting technique. (c) Perception 

with no collision of the second Scenario. (d) Final velocities are 

determined according to the different initial velocities and equal 

masses of characters by Newton’s Laws, as well as the concepts 

of momentum and kinetic energy conservation after detection 

collision by the Raycasting technique.  

 

Algorithm: Collision detection 

Input:   initial masse, direction, initial velocity, ray        

               range, characters, character controller, positions,    

               and orientations.  

Output:  final velocity, final direction and rotation.                                                 

                distance 

If (collision occurs) then      

- Calculate distance.    

-If   ( VM>Vm and  M > m)    then  

  ( 𝑣′
𝑀 =  𝑣𝑀  and 𝑣′𝑚 = 2 𝑣𝑀) 

 -Else if( VM>Vm and  M =m) then  

  ( 𝑣′
𝑀 =  0  and 𝑣′𝑚 =  𝑣𝑀)        

 -Else if( Vm>VM and  m>M)  then  

   ( 𝑣′
𝑚 =  𝑣𝑚  and 𝑣′𝑀 = 2 𝑣𝑚)   

 -Else if( Vm>VM and  m=M) then  

  ( 𝑣′
𝑚 =  0  and 𝑣′𝑀 = 𝑣𝑚)          

 -Else if( VM<Vm and  M>m) then  

  ( 𝑣′
𝑚 =  𝑣𝑚  and 𝑣′𝑀 = 2 𝑣𝑚)  

 -Else if( Vm<VM and  m>M) then  

  ( 𝑣′
𝑚 =  𝑣𝑚  and 𝑣′𝑀 =  𝑣𝑀)  

 -Else if( Vm=VM and  m=M) then 

   ( 𝑣′
𝑚 =  𝑣𝑚  and 𝑣′𝑀 =  𝑣𝑀)  

 -End if 

-Change direction. 

-Change rotation. 

End if 

 

III. CROWD SYSTEM RESULTS AND DISCUSSION 

Virtual humans simulated on a Windows 10 computer 

with an Intel i7 processor running at 2.80 GHz, an NVIDIA 

GeForce GTX 780 graphics card, and 8 GB of RAM. The 

pedestrian system utilizes shader files for rendering the models 

and C# scripts to simulate the behaviour of virtual individuals 

within Unity 3D, version 2018.3.2f1 (64-bit). 

The crowd system enhances the visual experience by 

including diverse character movements, rendering the simulation 

more dynamic and realistic. These movements are specifically 

selected to ensure that the virtual humans behave naturally in 

various scenarios. Combining high-quality shaders, detailed 

character animations, and realistic behaviours allows a seamless 

and immersive simulation of crowded environments. This setup 

offers a strong platform for real-time simulation and visualization 

of extensive pedestrian systems, providing valuable insights for 

various applications such as crowd control and urban planning. 

 

III.1 CROWD DENSITY AND ANIMATION VARIATION 

IN OPEN ENVIRONMENT 

To ensure a variety of movements among the crowd, we 

set the models in an open environment where each model has 

specific motions and behaviours while avoiding collisions. The 

actions include idle poses, jumping, walking, strolling with a 

briefcase, feminine gait, an older adult's unique motion, walking 

with joy, performing rhythmic hip-hop dancing, walking while 

texting, and running. Each model can perform specific 

movements that vary along a predetermined path. The animations 

are set to a specific speed, ranging from 1 to 50 units per second. 

Page 242



 
 
 

 

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025. 

 

 

 
Figure 6: The performance evaluation of our approach across four 

different scenarios involved examining how adding various types 

of animations with different speed values affects the changes in 

FPS values. 

Source: Authors, (2025). 

These speed values are determined to achieve realism and 

visual attractiveness, enhancing overall movement dynamics 

within the specified parameters. As a result, each model's 

movement represents its unique characteristics and activities (see 

Figure 6). 

In another approach, we manage character animations in 

scenarios where collisions occur between them (Figure 7). Each 

character is animated with various movements and speeds, 

allowing for realistic, interactive collisions. We use collision 

detection algorithms based on Newton's Laws to effectively 

manage these collisions, focusing on momentum and kinetic 

energy conservation.   

This method accurately calculates the final velocities of 

characters after a collision by utilizing raycasting techniques. The 

algorithm considers each character's initial mass and velocity to 

compute the result, providing no external forces are applied. It 

ensures that character interactions behave realistically, with 

adjustments to their velocities reflecting the laws of physics. By 

incorporating these principles, we achieve a more immersive and 

believable simulation of collisions between characters. This 

approach is beneficial for creating dynamic environments where 

characters interact with one another in real time, such as in crowd 

simulations. 

 

III.2 THE PERFORMANCE EVALUATION OF OUR 

ANIMATION VARIATION APPROACH BY EXPLORING 

THE MAXIMUM COMBINATIONS OF ELEMENTS 

To ensure the precision of our animation results, we 

identify combinations of elements that increase diversity. We 

begin by selecting key factors such as each character's movement 

type and speed variations. The process calculates the possible 

ways to combine these factors at each time step. We can generate a 

wide range of character behaviours by identifying the maximum 

combinations for these elements across multiple scenarios.  

This approach ensures diverse and realistic animations, allowing 

characters to interact in varied ways. It also enhances the 

simulation by accounting for different kinds of motion and speeds 

in dynamic environments, where:   

•  H : It represents the maximum number of characters our model 

utilises for simulation and animation. 

•  T : It represents the maximum number of animation types each 

character uses in the simulation or model. 

•   V : It represents the maximum number of speed values assigned 

to each character in the simulation.    

• Max_Combinations_Anim: It represents the value of the 

maximum feasible combination of terms for each model, which 

contributes to the overall variety and diversity of animations 

within the simulation. 

 

H×T×V=Max_Combinations_Anim 

 

The maximum feasible combination of model terms that 

contribute to the variety of animations in the simulation: 

(18×10×50) ×5=9000. 
 

 
Figure 7: The scenario of crowd animation with collision detection: (a) Perception with collision: The green arrow represents the 

character's field of view, while the red arrow indicates the velocity before the collision. (b) Collision detection between two characters. 

(c) After the collision is detected using the Raycasting technique, the red arrow shows the final velocities, which are determined based 

on the characters' initial velocities and masses by Newton's Laws and the principles of momentum and kinetic energy conservation. 

Source: Authors, (2025). 

(c) 

(b) 
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Figure 8: Exploring the maximum feasible combinations of 

elements in our diverse animations based on the number of 

characters involved. 

Source: Authors, (2025). 

We realized that our algorithm could generate various 

motion types by combining key factors such as the number of 

characters and the range of movement types at different speeds. 

As the number of characters in various scenarios increases, so 

does the potential for diverse motion combinations. For instance, 

using 1080 characters, our algorithm can produce approximately 

540000 unique combinations. This feature significantly increases 

the range of feasible character movements, making the simulation 

more dynamic and varied. We can introduce additional character 

types and movement styles to enhance this variety further, 

resulting in more complex and visually realistic animations.  

This expansion improves the realism of individual 

character interactions and significantly improves the overall 

quality of crowd simulations. By providing these combinations, 

we can create a more immersive and immersive experience, 

offering a wider range of diverse animations for large-scale crowd 

scenes and dynamic environments. 

 

Table 2:  The maximum combination values improve the visual 

animation diversity of various templates in different scenarios. 

Number of characters 

in different scenarios 

 Visual animation  diversity 

considering maximum 

combination values 

Scenario1 ,H=18 9000 
Scenario2 ,H=72 36000 
Scenario3,H=144 72000 
Scenario4,H=720 360000 

Source: Authors, (2025). 

III.3 EVALUATION OF THE PERFORMANCE OF 

POSSIBLE COMBINATIONS OF OUR APPROACH FOR 

CHANGING ANIMATIONS USING A PARTICULAR 

NUMBER OF ELEMENT SETS FOR DIFFERENT 

CHARACTERS. 

The following process presents how to increase animation 

variation by selecting elements simultaneously. We determine the 

number of combinations for different terms across various 

contexts, considering factors like character types, movement 

styles, and speeds. This approach maximizes diversity in 

animations, allowing for more dynamic and varied character 

behaviours in different simulation scenarios. 

       𝐶𝐻
ℎ . 𝐶𝑇

𝑡 . 𝐶𝑉
𝑣 . = 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒_Animation_Variety    

 

To begin, we assign specific labels to each item associated 

with an account, ensuring accurate identification and 

categorization for efficient processing and analysis. 

• H represents the maximum number of characters while h 

denotes the number of characters under consideration in a given 

scenario.  

• T represents the total number of animation types used by 

our models, while t specifies the specific type of animation 

applied to a particular model. 

• V refers to the maximum height value of speed 

animation for our characters, representing the highest possible 

speed in the animation. Meanwhile, v denotes the specific speed 

value assigned to each character during their animation, allowing 

for variation in movement and enhancing the realism of character 

actions. 

• Possible_Animation_Variety indicates the number of 

possible combinations of these different terms, such as character 

types, animations, and speeds that contribute to the overall variety 

and diversity of animations in our simulation or model. 

Next, we determine the number of combinations in our 

scene based on the various terms defining the animation variety 

for our ten distinct models. To do this, we define the following 

variables: 

H = 10 for the total number of characters, and h = 1 for the 

characters considered. 

T = 10 for the total number of animation types utilized by 

our models, with t = 1, t = 4 specifying the types of animation 

used by the model during its animation. 

V = 50 represents the height value of the speed animation 

for our characters, and v = 1 signifies the specific speed value 

assigned to each model. 

Using these variables, we can calculate the total number of 

unique animation combinations within our scene. The 

combination of these elements (character types, animation styles, 

and speed values) results in a wide variety of possible motion 

sequences for each character. This allows us to generate a more 

dynamic and diverse simulation, ensuring that each character 

behaves in a unique and realistic way. The formula derived from 

these variables will provide the total number of animation 

possibilities for the crowd, enhancing realism and interaction 

within the simulation. 

Possible combinations are: 

 

(C
10

1
. (C

10

1
+ C

10

4
). (C

50

1
)) × 18 =  (10* (10 +210) *(50)) ×18 

                                                         = 1980000. 
 

 

IV. OPTIMAZING REAL TIME PERFORMANCE 

 The reason for measuring the efficacy of crowd simulation 

depends on an accurate characterization of the aims of the crowd 

simulation tasks. Computer simulations of crowd behaviour may 

emphasize different performance metrics depending on the 

objectives of the application [15]. Some studies [16-18] propose 

simulating virtual crowd systems that are identical to real crowds. 

This enables them to clarify the operational dynamics of real 

crowds and identify potential risks within the system. Thus, their 

performance indicators reflect the accuracy of the simulation, its 
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similarity to actual crowd behaviour, and the behaviour of 

individual agents. 

 Enhancing our real-time model's efficiency requires reducing 

computational and rendering complexity in character animation. 

We achieve this by combining techniques such as object pooling, 

frustum culling, and occlusion culling, ensuring smooth 

performance even with several animated characters displayed 

simultaneously. It produces greater frame rates and less latency. 

IV. 1 OBJECT POOLING FOR PERFORMANCE 

OPTIMIZATION 

 This method involves creating a collection of inactive 

characters, which are subsequently utilized as required. This 

method reduces memory allocations and enhances performance as 

animated characters increase. Rather than repeatedly creating and 

eliminating characters, which incurs significant computational 

costs, we utilize pre-existing objects, thus minimizing memory 

overhead and garbage collection, ultimately improving real-time 

performance. 

 

Algorithm: pooling for performance optimization 

Input: 3D character  models, collection size, distance      

            between characters, velocity range, mass range  

Output: different animations, avoid collision, reduce memory 

allocation, optimize real-time 

  

For each character in the allocation set do 

Instantiate character number    

Sets the character inactive 

Adjust character size and rotation. 

Incorporate characters into the collection list. 

end for 

For each character in the allocation set do 

Iterates through the collection 

Activate available character 

Give a unique random position 

Apply different animations at varying speeds. 

Avoid collision  

end for 

For each character stored  in the collection list do 

Iterates through collection list 

Return the first inactive object 

end for 

 

IV. 2 FRUSTUM CULLING FOR PERFORMANCE 

OPTIMIZATION 

  This technique prevents the display of characters outside 

the camera's vision by specifying the camera's perspective, 

defined as the frustum. Only characters within this viewpoint are 

rendered, enhancing performance by conserving computational 

resources and reducing the GPU load. By verifying if the 

animated character is within the camera's field of vision, we 

can selectively deactivate or activate them, optimizing resource 

utilization and improving rendering efficiency. 

 

IV. 3 OCCLUSION CULLING FOR PERFORMANCE 

OPTIMIZATION 

This method determines if a character, although within 

the camera's field of vision, has been hidden or occluded by 

other objects. It prevents the engine from displaying characters 

hidden by different elements. Eliminating the rendering of 

hidden characters conserves computational resources. This 

approach increases FPS and improves performance by 

eliminating unnecessary rendering. 

IV. 4 PERFORMANCE OPTIMIZATION OF HYBRID 

METHODS 

Our method simulates multiple characters, each having distinct 

motions and velocities. We utilize Newton's Laws, laws of 

momentum, and the conservation of kinetic energy to prevent 

collisions between the models. It enables the computation of final 

velocities after collision detection using the Raycasting 

method, without external net forces, depending on each character's 

starting mass and velocity. 

Then, we implement a hybrid approach that combines the pool 

object algorithm with frustum culling and occlusion culling 

approaches to enhance the frames per second during character 

movement. This technique improves real-time FPS performance, 

eliminates insignificant computations and rendering for characters 

unavailable to the camera, and decreases frequent memory 

allocation and deallocation. 

By integrating these methods, we achieve significant results: 

our models perform at consistent frame rates, eliminate using 

resources on invisible characters and objects, minimize 

unnecessary frame computations, and prevent the rendering of 

occluded objects by analyzing the scene's geometry and 

identifying disabled characters (see figure 9). 

Algorithm: object pooling and culling algorithms  

for performance optimization 

Input: 3D character  models, collection size, distance between 

characters, velocity range,  

 mass range, primary camera reference, Fractional camera culling  

Output: different animations, avoid collision, reduce memory 

allocation, optimize real time,  

reducing the processing load 

 

Algorithm pooling for performance optimization 

For each active character in the collection set do 

Obtains renderer 

Checks character within frustum 

Detects hiding character 

If the object is visible and not occluded 

              remains active 

              else 

              remains inactive 

end if 

end for 

Measure object-main camera distance. 

Perform Raycast 

Check if another object blocks the character. 

Deactivate objects that are not visible 
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Figure 9: Improvement of FPS performance with pooling and 

culling optimisation algorithms. 

Source: Authors, (2025). 

 

V. CONCLUSIONS 

 

We propose in this paper a method to enhance the 

diversity of crowd animation by integrating numerous animation 

styles and assigning each character distinct movements with 

varying velocities. This approach involves establishing unique 

animation cycles specific to each character model, facilitating a 

diverse array of movements during the simulation. Our method 

aim to obtain a more dynamic and realistic representation of 

crowd animation in virtual spaces while avoiding characters 

appearing too similar to each other.  The study considers several 

human genders and age groups, ensuring that each character 

exhibits distinct movements. 

Furthermore, we introduce an algorithm that utilizes 

Ray-casting for collision prevention between characters. Based on 

fundamental physics principles such as Newton's laws, 

momentum conservation, and kinetic energy conservation, the 

algorithm calculates the final velocities of characters during 

potential collisions, ensuring realistic and accurate results in 

crowd simulations. This results in more convincing and realistic 

crowd visualizations. 

Additionally, we implement a hybrid approach that 

combines the object pooling algorithm with frustum culling and 

occlusion culling techniques. This method stabilizes frames per 

second in real-time and enhances performance, producing 

significant results by reducing the number of active objects 

processed. It ensures that only characters actively contributing to 

rendering and animation are considered, optimizing overall 

simulation efficiency. 

As a prospective enhancement, we plan to improve our 

system by integrating crowd behavior principles to enhance 

simulation realism. Additionally, we aim to apply reinforcement 

learning for character animation and obstacle avoidance, enabling 

adaptive crowd navigation across diverse scenarios. This will 

facilitate effective autonomous navigation for multiple agents in 

more complex environments. 
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