
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.52, p. 237-246. March./April., 2025.
DOI: https://doi.org/10.5935/jetia. v11i52.1677

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

ENHANCING REAL-TIME ANIMATION: ENSURING DISTINCTIVENESS IN

CROWD DYNAMICS THROUGH PHYSICS-BASED COLLISION

AVOIDANCE

Imane DRIDI 1, Cherif FOUDIL 2

12 LESIA Laboratory, Institute of Science Department of Computer Science, Mohamed Khider University, Biskra, Algeria.

1 https://orcid.org/0009-0009-7958-5462 , 2http://orcid.org/0000-0003-1539-835X

Email: imane.dridi@univ-biskra.dz, cherif.foudil@univ-biskra.dz

ARTICLE INFO ABSTRACT

Article History

Received: March 03, 2025

Revised: March 20, 2025

Accepted: March 15, 2025

Published: April 30, 2025

Crowds are essential in daily activities, performing as dynamic systems of human

interaction. They involve numerous individuals collecting in specified locations for diverse

activities, whether in urban environments, public events, or social interactions. In virtual

environments, animated crowds frequently display repetitive behaviors and a deficiency in

movement diversity, leading to unrealistic simulations. It is imperative to provide

distinctive and diverse actions for each character, avoiding visual duplication to augment

realism. This paper introduces a method to enhance crowd variety by ensuring distinct and

realistic character movements. We propose providing various motion types to prevent the

duplication of cloned characters. Our approach creates a set of animations and utilizes

techniques to control character velocity, ensuring distinctive and convincing movements.

Furthermore, we present collision prevention methods based on Newton's Laws, the

conservation of momentum, and the laws of kinetic energy. Ray-casting determines

collision velocities by considering each character's mass and velocity without external

forces. We implement a hybrid pool object approach and occlusion culling techniques to

optimize real-time performance, increasing FPS (framed per second) and reducing

computational load. These experiments evaluate the efficacy of our technique under

different conditions. The results demonstrate the method's effectiveness and flexibility in

dynamic environments.

Keywords:

Animation variety,

Collision prevention,

Newton’s laws and the laws of

momentum,

Optimization pool object algorith

Occlusion culling algorithm.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

A virtual crowd involves individual virtual entities that

reflect behaviours identical to those of their adjacent neighbours,

each possessing distinct actions and properties. Animators

categorize the crowd into numerous entities and regulate the

crowd's collective behaviours, the groups' movements, and the

conduct of each virtual entity. Monitoring identical characters

performing the same behaviour makes it feasible to regulate

crowd movement, navigate around obstacles, and facilitate

interactions with 3D characters or virtual humans.

Real-time crowd simulation is a technique for animating

the movement of large groups of characters within a virtual

environment. As the crowd moves, each character dynamically

interacts with others based on predefined behaviours, such as

avoiding collisions or navigating obstacles. These interactions are

defined by algorithms that adjust character paths to maintain

personal space, avoid obstructions, and respond to environmental

changes. It results in an evolving, natural collective behaviour that

unfolds in real time, allowing characters to react continuously to

their surroundings and each other. The challenge lies in executing

these processes instantly, ensuring fluid and realistic movement in

virtual settings like games and simulations.

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

Our crowd animation technique produces distinct

locomotion cycles for each character, creating diverse movements

that enhance realism and complexity within the scene. Beyond

movement variation, we introduce a technique to prevent

character collisions, ensuring smooth and natural interactions

among individuals in the crowd. Our approach is based on

Newton's laws of motion, incorporating principles of momentum

and kinetic energy conservation under the assumption of no

external forces. By applying these physical principles, our method

accurately computes the final velocities of characters after

interactions, maintaining realistic and natural movement.

This integration of dynamic animation and collision

avoidance leads to a more immersive and cohesive crowd

simulation, making character behaviour more believable in

complex virtual environments. Motion has a significant role in

capturing crowds' diversity since virtual characters' physical

appearance is often limited. To address this, many researchers

have developed animation methods. For example, one study [1]

aims to minimize memory usage while generating and animating

various crowd characters.

This approach involves two main steps: first, simplifying

and segmenting virtual character data into essential body parts;

second, integrating installation and peeling information into a

shared texture space for the new characters. Rigging and skinning

data are incorporated into global textures through UV

parameterization, allowing all created characters to share a single

set of rigging and skinning textures for each gender or age variant

(male, female, child). It reduces memory for efficient large-scale

crowd simulations but may introduce artefacts, impacting

animation quality and crowd smoothness [1].

The study in [2] includes different approaches to improve

crowd simulation in important areas. It utilizes a multi-domain

planning method and uses steps instead of depending exclusively

on the speeds and placements of the character roots. The

animation focuses on frame-based solutions to avoid foot-sliding

artefacts and synthesizes character movements to ensure they

follow the provided paths. In addition, the research introduces a

distinctive rendering method based on joint impostors, which is

validated by the results of validation experiments. The authors in

[3] introduces a data-driven optimization strategy for dynamically

adjusting individual agent velocities in response to real-world

crowd movement patterns. It improves the realism of the

simulated pedestrian behaviours.

The study in [4] focuses on minimizing memory usage and

optimizing the rendering step using two complementing

architectures. The first is a skeleton linked to octrees for each

limb, which determines the amount of detail for geometry and

animation. The second structure is scene tiling, which determines

the level of detail required for geometry, animation, and character

behaviour. A quad-tree is constructed on top of this tiling to

improve rendering optimization, allowing geometry from many

characters to be combined in locations away from the camera.

Furthermore, this tiling functions as an evaluating mechanism,

increasing the effectiveness of collision avoidance calculations.

The method presented in [5] uses Gaussian Process

Dynamical Models to generate probabilistic low-dimensional

poses for motion. Sampling trajectories through Monte Carlo

Markov Chains creates infinite motion variants, including blended

versions, without costly non-linear interpolation in the mesh

domain. This approach allows for the efficient generation of

diverse and realistic motion variations, offering animation

flexibility while maintaining computational efficiency. The ability

to generate such diverse movements without the overhead of

complex interpolation techniques makes it a valuable tool for

realistic and dynamic motion synthesis in various applications.

The output variations generated by the method in [5] remain

relatively similar to the input movements while allowing for

changes in poses and timings.

 The goal is to create infinite variations for each blended

motion using a motion parameterization approach. This approach

provides control for customizing motion and simulations, but

parameterizing motion capture and controlling variations can be

complex and less effective for complex movements.

In addition, to create a diversified heterogeneous crowd,

[6] presents a multi-agent reinforcement learning-based method

that incorporates a variety of input settings. This approach

demonstrates generalized crowd navigation, allowing for the

simulation of diverse individual behaviours within the crowd. The

system can account for complex agent interactions by utilizing

reinforcement learning, generating realistic and dynamic crowd

movements. This method enhances the ability to simulate large

crowds with varying characteristics, ensuring a more natural

representation of human behaviour in crowded environments.

These techniques benefit applications in gaming, virtual reality,

and crowd management simulations, where realistic and diverse

animations are necessary.

The study in [7] presents a local collision avoidance

algorithm for uncrewed surface vehicles (USVs) based on the

International Regulations for Preventing Collisions at Sea

(COLREGs). The algorithm is divided into three main sections:

collision risk assessment, which evaluates the potential for

collisions; steering occasion determination, which identifies the

need for course adjustments; and navigation waypoint updates,

which modify the vehicle's path to avoid obstacles. This approach

ensures safe navigation for USVs in complex environments by

considering real-time collision risks and applying the rules of

maritime navigation to maintain safe distances from other vessels

and obstacles.

The algorithm uses the closest point of approach (CPA)

method to evaluate collision risk within an analytically defined

angle range, assessing potential threats from other vessels or

obstacles. The steering occasion determination calculates a

supplemental steering angular velocity, allowing the USV to

adjust its course and maintain a safe distance. The navigation

waypoint update generates temporary waypoints, ensuring

compliance with COLREGs for safe passing and crossing

situations. Finite state machines (FSMs) control these three

components, coordinating the decision-making process. This

method guarantees adherence to COLREGs, reduces collision

risks, manages dynamic situations, and enhances USV efficiency.

Nevertheless, incorporating COLREGs may elevate

computational requirements, thus affecting performance.

Moreover, environmental factors limit the algorithm's practical

application. In contrast, [8] used a rule-based Bayesian Network

approach to model collision issues for ships and marine

structures. This method offers clear reasoning and high visibility,

making it easier to understand the decision-making process while

providing stability in the system's behaviour.

However, it may lead to uncertain or inconsistent ship

behaviour due to the inherent conditions required for state

transitions. For example, conflicts can arise between the

triggering situations for specific behaviours, which may result in

unexpected or incorrect decisions. These conflicts can cause

system failures or degrade the algorithm's reliability, especially

when dealing with complex or dynamic maritime scenarios.

Additionally, the algorithm's ability to handle intricate situations

Page 238

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

is limited, which affects its overall performance in real-world

applications. The challenge of analyzing and resolving these

complicated scenarios means that while intuitive and

interpretable, the rule-based approach may not always be the most

effective solution in dynamic environments where rapid and

flexible decision-making is required [9],[10]. As a result,

alternative approaches or hybrid systems might be necessary to

improve robustness and adaptability in collision avoidance

algorithms for maritime navigation.

The authors in [11] proposed an innovative approach for

modelling agent movements in crowd simulations with deep

reinforcement learning (DRL). Based on environmental

awareness, this technique emphasizes the development of agents'

navigation strategies, including locomotion and obstacle

avoidance. This research substantially advances the field by

establishing a parametric framework for developing crowd

simulation environments, thus allowing performance evaluation

across numerous scenarios.

The authors of [12] present the CrowdMoGen framework

employs a dual-phase approach for generating crowd motion

based on text input. The Crowd Scene Planner employs a Large

Language Model (LLM) to analyze textual descriptions and

generate motion plans, specifying both semantic (activities) and

spatial (trajectories) characteristics.

The Collective Motion Generator employs a diffusion-

based model, incorporating InputMixing and Control Attention

approaches, to synthesize character movements that realistically

conform to intended dynamics. This method facilitates zero-shot

motion generation, obviating the necessity for paired training

data. Consequently, CrowdMoGen improves adaptability and

authenticity in crowd animation.

In this paper [13], authors proposed an approach

incorporates Anisotropic Fields (AFs) to address the limitations of

replicating homogenous behaviors. By capturing the uncertainty

and variability in crowd motions, it enhances realism and

behavioral diversity in simulations. The produced AFs are

integrated into the crowd simulation engine, influencing agent

decision-making processes. The method examines video data in

real crowds to identify movement patterns and transform them

into AFs. This approach involves capturing individual motions

and calculating local directional preferences to create AFs that

represent observed behaviors.

This paper addresses a significant challenge in real-time

crowd simulation: preventing unintended character movements in

virtual environments and optimizing real-time performance by

combining the pooling and culling algorithms to improve the

efficiency and quality of interactive models. We aim to ensure

consistent frame rates, reduce the computational load of hardware

(CPU, GPU and memory), and ensure precise navigation for

realistic interactions while maintaining movement within a

reasonable range of animations.

This approach improves visual realism and ensures a more

convincing crowd simulation experience. We apply Newton's

laws of motion, momentum, and kinetic energy to improve

collision detection and avoidance. By estimating and modifying

character movement in real-time, we can prevent collisions while

maintaining physical realism, resulting in smoother, more realistic

character interactions and a more realistic virtual environment.

This approach ensures that characters move and interact in a way

consistent with the laws of physics, contributing to an immersive

simulation.

II. MODELING VIRTUAL HUMAN ANIMATION

Simulating different crowds is important for real-time

applications such as games, animated films, and navigation

systems. These applications benefit from added features and

details that improve the visual quality of the virtual environment

and its elements, thereby enhancing the overall realism and

performance of the system. It is essential to explore how

animation variation and collision avoidance can generate a range

of motions by creating unique movements for each character

model, improving FPS (frames per second) stability by reducing

the rendering load and making the FPS calculations consistent.

This approach allows for the production of diverse animations,

ensuring each character moves in its distinct way. Applying

animation diversity is crucial in creating a crowd that highlights

each character’s individuality, contributing to a more dynamic

and realistic crowd simulation (see Figure 1).

Figure 1: Animation and collision avoidance approach in crowd

simulation.

Source: Authors, (2025).

II.1 ANIMATION APPROACH

We utilise an animator controller and scripting to create

diverse and unique movements for our models. The animator

controller efficiently manages and blends multiple animations. At

the same time, scripting allows us to activate animations based on

specific conditions or user interactions, giving each model its

personality and individuality. This approach ensures that our

models move realistically and interactively, enabling walking,

running, jumping, turning, and idling (see Figure 2).

We developed a collection of animated clips and

integrated them with scripting in the animator component to

achieve this. This setup triggers animations based on defined

conditions or user inputs, ensuring fluid and lifelike character

behaviours. We efficiently assign and control various movement

patterns by constructing multiple animations with distinct

attributes and motions. Additionally, we enhance diversity by

seamlessly blending animations, resulting in more dynamic and

natural motion transitions. Our animation system is enhanced by

C# scripting, ensuring accurate animation behaviours while

preserving clarity and flexibility. Through custom scripting

algorithms, we introduce realistic variations in motion. A key

aspect of this process involves dynamically generating velocity

Page 239

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

values to regulate animation speed, ensuring smooth transitions

between different movements. These velocity-based transitions

create a seamless animation flow, enhancing realism and

immersion. We initially position models randomly in different

directions to ensure a varied animation cycle for different virtual

characters. Each model is assigned a unique animation type with

specific speed parameters and the ability to jump to a certain

height. These techniques generate diverse locomotion cycles,

resulting in more visually realistic crowd movement.

Figure 2: Animation and collision avoidance approach in crowd

simulation. Employing a variety of animation styles for different

models, each with its own speed.

Source: Authors, (2025).

II.2 MOVEMENT PATH VISUALIZATION

Creating a unique animation style for characters in a

virtual world or interactive environment is crucial for defining

their personalities and improving the fluidity of their movements.

Blending various animations with controlled movement along

predefined paths allows characters to be represented distinctly and

dynamically. This method ensures that each character moves

uniquely, engaging and consistent with their role in the virtual

world, which adds depth and realism to the overall experience.

We explore a strategy demonstrating how our crowd can

distinguish its animation style.

Algorithm: Character animation with paths

Input: character, movement, velocity, position list of

points.

Output: a path to follow.

- Determinate the initial position of the path

- Determinate the destination position of the path

- Determinate the movement.

- Determinate the velocity

- Determinate the path

- Following the path

Figure 3:Various animations with different speeds to follow the

path sequence.

Source: Authors, (2025).

It includes animating characters with diverse movements

and controlling their speed along a specified path. In our

environment, we set a starting point and a final destination for

each character, guiding them through a path to reach their goal

effectively. A key aspect of this strategy is using varied motion

styles to reflect the characters' personalities and actions. These

styles encompass a range of movements, including idle states,

walking, strolling with a briefcase, performing a feminine gait, a

unique older man's walk, walking with joy, rhythmic hip-hop

dancing, texting while walking, and running. Each motion style

adds depth and individuality to the characters, ensuring they are

dynamic and realistic in different situations, ultimately enhancing

engagement and realism within the virtual environment (see

Figure 3).

In addition to animation variation, controlling the

movement speed and path traversal is another critical factor. Each

model is defined to perform particular types of movement and can

change how it moves along a predetermined path. The animation

is controlled by a speed parameter ranging from 1 to 50 (m/s).

These speed decisions are precisely selected to ensure the

movement appears realistic and visually appealing, enhancing the

overall sense of motion within the defined parameters. As a result,

each character's movement feels distinct, representing their

characteristics and activities. A character's movement speed may

also reflect its emotional condition and give additional depth to

the animation. We ensure that each character moves effortlessly

and naturally by blending different animations with varying

movement speeds. The variations in speed and animation styles

emphasize their individuality, making their behaviours more

noticeable.

Figure 4: Enhancing visual animation diversity across

various templates in an urban context.

Source: Authors, (2025).

-Random positions

-Random directions

-Different types of animations

-Different speeds of animations
-Different heights jump.

Page 240

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

This method not only improves the visual dynamic of the

environment but also enhances transmitting emotions and

intentions through character movements and animations (see

Figure 4).

II.3 CROWD COLLISION DETECTION APPROACH

We present a comprehensive description of our approach,

which aims to improve and achieve realistic results in collision

avoidance within crowds. Collision avoidance is a critical

challenge in crowd simulation, as it ensures individuals within the

environment move without unrealistic interactions. Addressing

this issue is essential for creating an efficient crowd system.

Many researchers have proposed various methods to implement

collision avoidance behaviour in crowd simulations.

The algorithm used is based on a technique called

Raycasting, Newton's Laws, along with the principles of

momentum and kinetic energy conservation for collision

detection and possibly for determining visibility or field of view:

• Raycasting Basics: It estimates the intersection between

our models during their movements from the projection of the

current character's position to the other character. It involves

casting a ray (a straight line) from a specific point (often a

character's position) in a particular direction (e.g., direction of

movement or field of view). The ray continues until it intersects

with an object in the scene or reaches a maximum distance.

• Collision Detection: Raycasting is a technique used in

character movement to detect collisions with nearby objects.

When a character moves forward, a ray is cast in the direction of

movement. This ray checks for obstacles within its path, such as

objects or other characters. If the ray intersects with an object, it

indicates a potential collision, allowing the game to respond

appropriately by stopping the character or adjusting its

movement. This method is efficient for real-time environments,

enabling accurate collision detection without complex geometry

calculations.

• Field of View Representation: Raycasting can also assess

what is visible from a character's perspective. By casting rays in

several directions within a defined field of view, we can

determine which objects or entities fall within that area and are

visible to the character. Based on this information, we calculate

the mass and initial speed (e.g., WalkSpeed, RunSpeed) to apply

to the character's movement.

• Collided characters: The raycasting method determines

if characters have collided after a set number of time steps. It

calculates the distance between them, considers their masses and

velocities, and selects the faster character. By casting rays along

the movement path, the method checks for potential collisions. If

a collision is detected, the model can adjust the characters'

positions or velocities based on their masses and speeds, ensuring

realistic interaction and response to obstacles or other characters.

• We applied Newton's Laws, along with the principles of

momentum and kinetic energy conservation, to model the

dynamics of motion and calculate the final velocities and

direction changes for each character during collisions. These

physical laws govern the interactions between objects and are

essential for accurately simulating realistic motion. The

conservation of momentum ensures that the total momentum

before and after a collision remains constant, while kinetic energy

conservation applies to elastic collisions where no energy is lost.

These principles apply without external forces, allowing us

to predict the results of character collisions with high accuracy

and realism.

Where, 𝑝1, 𝐾1, 𝑝2, 𝐾2, 𝑝′1, 𝐾′1, 𝑝′2 and 𝐾′2 are the momentum

and kinetic energy of character 1 and character 2 before and after

the collision, respectively [14].

Table 1: Determination of the final velocity of the

characters after the sensing collision by the raycasting technique,

Newton's laws, the concepts of momentum and conservation of

kinetic energy.

Scenarios

Various

mass and

velocity

cases.

The velocities

at the time of

collision.

Final velocities

after collision

detection.

Scenario1

M >> m

And

VM>Vm

𝑣′
𝑀

=
𝑣𝑀 (𝑀 − 𝑚)

𝑀 + 𝑚

𝑣′
𝑚 =

2𝑀 ∗ 𝑣𝑀

𝑀 + 𝑚

𝑣′
𝑀 = 𝑣𝑀

𝑣′𝑚 = 2 𝑣𝑀

Scenario2

M = m

And

VM ≠ Vm

𝑣′
𝑀 = 0

𝑣′𝑚 = 𝑣𝑀

Scenario3

M>m

And

VM<Vm

𝑣′
𝑀=𝑣′

𝑀

𝑣′
𝑚=𝑣′

𝑚

𝑣′
𝑀 = 𝑣′

𝑀

𝑣′𝑚 = 𝑣′𝑚

Scenario4

M=m

And

VM=Vm

𝑣′
𝑀 = 𝑣′

𝑀

𝑣′𝑚 = 𝑣′𝑚

Source: Authors, (2025).

𝑝1 + 𝑝2 = 𝑝′1 + 𝑝′2 = 𝑐𝑡𝑒 (1)

 𝐾1 + 𝐾2 = 𝐾′1 + 𝐾′2 = 𝑐𝑡𝑒 (2)

When our two characters collided at two different

velocities, 𝑣𝑀 and 𝑣𝑚 and two different masses, 𝑀 for the heavier

object and 𝑚 for the lesser one, along with the sum of the two

momenta, the sum of the two kinetic energies is conserved in

elastic collisions.

The two conservation equations are written as follows:

 𝑀𝑣𝑀
2

2
1 + 𝑚𝑣𝑚

2
2
1 = 𝑀𝑣𝑀

′2
2
1 + 𝑚𝑣𝑚

′2
2
1 (3)

𝑀𝑣𝑀 + 𝑚𝑣𝑚 = 𝑀𝑣′𝑀 + 𝑚𝑣′𝑚 (4)

Where the final velocities of both objects 𝑣′𝑀, and 𝑣′𝑚 are

given. The sums of the velocities before and after the collision for

each object are equal when the two equations are rearranged with

the velocities of one object on one side of Eq. (3) and Eq. (4) and

those of the other on the opposite side, then dividing the

rearranged Eq. (3) with the rearranged Eq. (4) [14].

𝑣𝑀 + 𝑣′𝑀 = 𝑣𝑚 + 𝑣′𝑚 (5)

The ultimate velocities following the collision are

determined by solving the set of linear Eq. (4) and Eq. (5):

𝑣′𝑀 =
(𝑀−𝑚)𝑣𝑀+2𝑚𝑣𝑚

𝑀+𝑚
 (6)

𝑣′𝑚 =
(𝑚−𝑀)𝑣𝑀+2𝑀𝑣𝑀

𝑀+𝑚
 (7)

Depending on the values of m and M for our colliding

characters in Eq. (4) and Eq. (5), we disregard the smallest value

and get the final velocities 𝑣′𝑀and 𝑣′𝑚 (Table 1). We derive a

valid method for collisions from Newton’s Laws, the laws of

Page 241

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

momentum, and kinetic energy conservation. It provides a way to

determine the final velocities after detection collision using the

Raycasting technique without external net forces, according to

each character’s initial masse and velocity (see Figure 5). In the

second scenario, when the masses are equal, the final velocity of

this character will be reduced to a small value for some seconds.

At this time, the second character will change its direction and

take the velocity of the first character to move. After steps of

seconds, both of them will take their first velocity. To ensure that

we examine all possible conditional cases that could occur

between characters, we have added two additional cases based on

the same previous data. In these two situations, the end velocity

used to predict the occurrence of a collision is the same as the

initial velocity of the two characters before the collision.

Figure 5: Examples of two cases of collision

Source: Authors, (2025).

Perception with no collision of the first Scenario. (b)

Final velocities are determined according to the initial different

velocities and masses of characters by Newton’s Laws, as well as

the concepts of momentum and kinetic energy conservation after

detection collision by the Raycasting technique. (c) Perception

with no collision of the second Scenario. (d) Final velocities are

determined according to the different initial velocities and equal

masses of characters by Newton’s Laws, as well as the concepts

of momentum and kinetic energy conservation after detection

collision by the Raycasting technique.

Algorithm: Collision detection

Input: initial masse, direction, initial velocity, ray

 range, characters, character controller, positions,

 and orientations.

Output: final velocity, final direction and rotation.

 distance

If (collision occurs) then

- Calculate distance.

-If (VM>Vm and M > m) then

 (𝑣′
𝑀 = 𝑣𝑀 and 𝑣′𝑚 = 2 𝑣𝑀)

 -Else if(VM>Vm and M =m) then

 (𝑣′
𝑀 = 0 and 𝑣′𝑚 = 𝑣𝑀)

 -Else if(Vm>VM and m>M) then

 (𝑣′
𝑚 = 𝑣𝑚 and 𝑣′𝑀 = 2 𝑣𝑚)

 -Else if(Vm>VM and m=M) then

 (𝑣′
𝑚 = 0 and 𝑣′𝑀 = 𝑣𝑚)

 -Else if(VM<Vm and M>m) then

 (𝑣′
𝑚 = 𝑣𝑚 and 𝑣′𝑀 = 2 𝑣𝑚)

 -Else if(Vm<VM and m>M) then

 (𝑣′
𝑚 = 𝑣𝑚 and 𝑣′𝑀 = 𝑣𝑀)

 -Else if(Vm=VM and m=M) then

 (𝑣′
𝑚 = 𝑣𝑚 and 𝑣′𝑀 = 𝑣𝑀)

 -End if

-Change direction.

-Change rotation.

End if

III. CROWD SYSTEM RESULTS AND DISCUSSION

Virtual humans simulated on a Windows 10 computer

with an Intel i7 processor running at 2.80 GHz, an NVIDIA

GeForce GTX 780 graphics card, and 8 GB of RAM. The

pedestrian system utilizes shader files for rendering the models

and C# scripts to simulate the behaviour of virtual individuals

within Unity 3D, version 2018.3.2f1 (64-bit).

The crowd system enhances the visual experience by

including diverse character movements, rendering the simulation

more dynamic and realistic. These movements are specifically

selected to ensure that the virtual humans behave naturally in

various scenarios. Combining high-quality shaders, detailed

character animations, and realistic behaviours allows a seamless

and immersive simulation of crowded environments. This setup

offers a strong platform for real-time simulation and visualization

of extensive pedestrian systems, providing valuable insights for

various applications such as crowd control and urban planning.

III.1 CROWD DENSITY AND ANIMATION VARIATION

IN OPEN ENVIRONMENT

To ensure a variety of movements among the crowd, we

set the models in an open environment where each model has

specific motions and behaviours while avoiding collisions. The

actions include idle poses, jumping, walking, strolling with a

briefcase, feminine gait, an older adult's unique motion, walking

with joy, performing rhythmic hip-hop dancing, walking while

texting, and running. Each model can perform specific

movements that vary along a predetermined path. The animations

are set to a specific speed, ranging from 1 to 50 units per second.

Page 242

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

Figure 6: The performance evaluation of our approach across four

different scenarios involved examining how adding various types

of animations with different speed values affects the changes in

FPS values.

Source: Authors, (2025).

These speed values are determined to achieve realism and

visual attractiveness, enhancing overall movement dynamics

within the specified parameters. As a result, each model's

movement represents its unique characteristics and activities (see

Figure 6).

In another approach, we manage character animations in

scenarios where collisions occur between them (Figure 7). Each

character is animated with various movements and speeds,

allowing for realistic, interactive collisions. We use collision

detection algorithms based on Newton's Laws to effectively

manage these collisions, focusing on momentum and kinetic

energy conservation.

This method accurately calculates the final velocities of

characters after a collision by utilizing raycasting techniques. The

algorithm considers each character's initial mass and velocity to

compute the result, providing no external forces are applied. It

ensures that character interactions behave realistically, with

adjustments to their velocities reflecting the laws of physics. By

incorporating these principles, we achieve a more immersive and

believable simulation of collisions between characters. This

approach is beneficial for creating dynamic environments where

characters interact with one another in real time, such as in crowd

simulations.

III.2 THE PERFORMANCE EVALUATION OF OUR

ANIMATION VARIATION APPROACH BY EXPLORING

THE MAXIMUM COMBINATIONS OF ELEMENTS

To ensure the precision of our animation results, we

identify combinations of elements that increase diversity. We

begin by selecting key factors such as each character's movement

type and speed variations. The process calculates the possible

ways to combine these factors at each time step. We can generate a

wide range of character behaviours by identifying the maximum

combinations for these elements across multiple scenarios.

This approach ensures diverse and realistic animations, allowing

characters to interact in varied ways. It also enhances the

simulation by accounting for different kinds of motion and speeds

in dynamic environments, where:

• H : It represents the maximum number of characters our model

utilises for simulation and animation.

• T : It represents the maximum number of animation types each

character uses in the simulation or model.

• V : It represents the maximum number of speed values assigned

to each character in the simulation.

• Max_Combinations_Anim: It represents the value of the

maximum feasible combination of terms for each model, which

contributes to the overall variety and diversity of animations

within the simulation.

H×T×V=Max_Combinations_Anim

The maximum feasible combination of model terms that

contribute to the variety of animations in the simulation:

(18×10×50) ×5=9000.

Figure 7: The scenario of crowd animation with collision detection: (a) Perception with collision: The green arrow represents the

character's field of view, while the red arrow indicates the velocity before the collision. (b) Collision detection between two characters.

(c) After the collision is detected using the Raycasting technique, the red arrow shows the final velocities, which are determined based

on the characters' initial velocities and masses by Newton's Laws and the principles of momentum and kinetic energy conservation.

Source: Authors, (2025).

(c)

(b)

Page 243

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

Figure 8: Exploring the maximum feasible combinations of

elements in our diverse animations based on the number of

characters involved.

Source: Authors, (2025).

We realized that our algorithm could generate various

motion types by combining key factors such as the number of

characters and the range of movement types at different speeds.

As the number of characters in various scenarios increases, so

does the potential for diverse motion combinations. For instance,

using 1080 characters, our algorithm can produce approximately

540000 unique combinations. This feature significantly increases

the range of feasible character movements, making the simulation

more dynamic and varied. We can introduce additional character

types and movement styles to enhance this variety further,

resulting in more complex and visually realistic animations.

This expansion improves the realism of individual

character interactions and significantly improves the overall

quality of crowd simulations. By providing these combinations,

we can create a more immersive and immersive experience,

offering a wider range of diverse animations for large-scale crowd

scenes and dynamic environments.

Table 2: The maximum combination values improve the visual

animation diversity of various templates in different scenarios.

Number of characters

in different scenarios

 Visual animation diversity

considering maximum

combination values

Scenario1 ,H=18 9000
Scenario2 ,H=72 36000
Scenario3,H=144 72000
Scenario4,H=720 360000

Source: Authors, (2025).

III.3 EVALUATION OF THE PERFORMANCE OF

POSSIBLE COMBINATIONS OF OUR APPROACH FOR

CHANGING ANIMATIONS USING A PARTICULAR

NUMBER OF ELEMENT SETS FOR DIFFERENT

CHARACTERS.

The following process presents how to increase animation

variation by selecting elements simultaneously. We determine the

number of combinations for different terms across various

contexts, considering factors like character types, movement

styles, and speeds. This approach maximizes diversity in

animations, allowing for more dynamic and varied character

behaviours in different simulation scenarios.

 𝐶𝐻
ℎ . 𝐶𝑇

𝑡 . 𝐶𝑉
𝑣 . = 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒_Animation_Variety

To begin, we assign specific labels to each item associated

with an account, ensuring accurate identification and

categorization for efficient processing and analysis.

• H represents the maximum number of characters while h

denotes the number of characters under consideration in a given

scenario.

• T represents the total number of animation types used by

our models, while t specifies the specific type of animation

applied to a particular model.

• V refers to the maximum height value of speed

animation for our characters, representing the highest possible

speed in the animation. Meanwhile, v denotes the specific speed

value assigned to each character during their animation, allowing

for variation in movement and enhancing the realism of character

actions.

• Possible_Animation_Variety indicates the number of

possible combinations of these different terms, such as character

types, animations, and speeds that contribute to the overall variety

and diversity of animations in our simulation or model.

Next, we determine the number of combinations in our

scene based on the various terms defining the animation variety

for our ten distinct models. To do this, we define the following

variables:

H = 10 for the total number of characters, and h = 1 for the

characters considered.

T = 10 for the total number of animation types utilized by

our models, with t = 1, t = 4 specifying the types of animation

used by the model during its animation.

V = 50 represents the height value of the speed animation

for our characters, and v = 1 signifies the specific speed value

assigned to each model.

Using these variables, we can calculate the total number of

unique animation combinations within our scene. The

combination of these elements (character types, animation styles,

and speed values) results in a wide variety of possible motion

sequences for each character. This allows us to generate a more

dynamic and diverse simulation, ensuring that each character

behaves in a unique and realistic way. The formula derived from

these variables will provide the total number of animation

possibilities for the crowd, enhancing realism and interaction

within the simulation.

Possible combinations are:

(C
10

1
. (C

10

1
+ C

10

4
). (C

50

1
)) × 18 = (10* (10 +210) *(50)) ×18

 = 1980000.

IV. OPTIMAZING REAL TIME PERFORMANCE

 The reason for measuring the efficacy of crowd simulation

depends on an accurate characterization of the aims of the crowd

simulation tasks. Computer simulations of crowd behaviour may

emphasize different performance metrics depending on the

objectives of the application [15]. Some studies [16-18] propose

simulating virtual crowd systems that are identical to real crowds.

This enables them to clarify the operational dynamics of real

crowds and identify potential risks within the system. Thus, their

performance indicators reflect the accuracy of the simulation, its

Page 244

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

similarity to actual crowd behaviour, and the behaviour of

individual agents.

 Enhancing our real-time model's efficiency requires reducing

computational and rendering complexity in character animation.

We achieve this by combining techniques such as object pooling,

frustum culling, and occlusion culling, ensuring smooth

performance even with several animated characters displayed

simultaneously. It produces greater frame rates and less latency.

IV. 1 OBJECT POOLING FOR PERFORMANCE

OPTIMIZATION

 This method involves creating a collection of inactive

characters, which are subsequently utilized as required. This

method reduces memory allocations and enhances performance as

animated characters increase. Rather than repeatedly creating and

eliminating characters, which incurs significant computational

costs, we utilize pre-existing objects, thus minimizing memory

overhead and garbage collection, ultimately improving real-time

performance.

Algorithm: pooling for performance optimization

Input: 3D character models, collection size, distance

 between characters, velocity range, mass range

Output: different animations, avoid collision, reduce memory

allocation, optimize real-time

For each character in the allocation set do

Instantiate character number

Sets the character inactive

Adjust character size and rotation.

Incorporate characters into the collection list.

end for

For each character in the allocation set do

Iterates through the collection

Activate available character

Give a unique random position

Apply different animations at varying speeds.

Avoid collision

end for

For each character stored in the collection list do

Iterates through collection list

Return the first inactive object

end for

IV. 2 FRUSTUM CULLING FOR PERFORMANCE

OPTIMIZATION

 This technique prevents the display of characters outside

the camera's vision by specifying the camera's perspective,

defined as the frustum. Only characters within this viewpoint are

rendered, enhancing performance by conserving computational

resources and reducing the GPU load. By verifying if the

animated character is within the camera's field of vision, we

can selectively deactivate or activate them, optimizing resource

utilization and improving rendering efficiency.

IV. 3 OCCLUSION CULLING FOR PERFORMANCE

OPTIMIZATION

This method determines if a character, although within

the camera's field of vision, has been hidden or occluded by

other objects. It prevents the engine from displaying characters

hidden by different elements. Eliminating the rendering of

hidden characters conserves computational resources. This

approach increases FPS and improves performance by

eliminating unnecessary rendering.

IV. 4 PERFORMANCE OPTIMIZATION OF HYBRID

METHODS

Our method simulates multiple characters, each having distinct

motions and velocities. We utilize Newton's Laws, laws of

momentum, and the conservation of kinetic energy to prevent

collisions between the models. It enables the computation of final

velocities after collision detection using the Raycasting

method, without external net forces, depending on each character's

starting mass and velocity.

Then, we implement a hybrid approach that combines the pool

object algorithm with frustum culling and occlusion culling

approaches to enhance the frames per second during character

movement. This technique improves real-time FPS performance,

eliminates insignificant computations and rendering for characters

unavailable to the camera, and decreases frequent memory

allocation and deallocation.

By integrating these methods, we achieve significant results:

our models perform at consistent frame rates, eliminate using

resources on invisible characters and objects, minimize

unnecessary frame computations, and prevent the rendering of

occluded objects by analyzing the scene's geometry and

identifying disabled characters (see figure 9).

Algorithm: object pooling and culling algorithms

for performance optimization

Input: 3D character models, collection size, distance between

characters, velocity range,

 mass range, primary camera reference, Fractional camera culling

Output: different animations, avoid collision, reduce memory

allocation, optimize real time,

reducing the processing load

Algorithm pooling for performance optimization

For each active character in the collection set do

Obtains renderer

Checks character within frustum

Detects hiding character

If the object is visible and not occluded

 remains active

 else

 remains inactive

end if

end for

Measure object-main camera distance.

Perform Raycast

Check if another object blocks the character.

Deactivate objects that are not visible

Page 245

ITEGAM-JETIA, Manaus, v.11 n.52, p. 237-246, March./April., 2025.

Figure 9: Improvement of FPS performance with pooling and

culling optimisation algorithms.

Source: Authors, (2025).

V. CONCLUSIONS

We propose in this paper a method to enhance the

diversity of crowd animation by integrating numerous animation

styles and assigning each character distinct movements with

varying velocities. This approach involves establishing unique

animation cycles specific to each character model, facilitating a

diverse array of movements during the simulation. Our method

aim to obtain a more dynamic and realistic representation of

crowd animation in virtual spaces while avoiding characters

appearing too similar to each other. The study considers several

human genders and age groups, ensuring that each character

exhibits distinct movements.

Furthermore, we introduce an algorithm that utilizes

Ray-casting for collision prevention between characters. Based on

fundamental physics principles such as Newton's laws,

momentum conservation, and kinetic energy conservation, the

algorithm calculates the final velocities of characters during

potential collisions, ensuring realistic and accurate results in

crowd simulations. This results in more convincing and realistic

crowd visualizations.

Additionally, we implement a hybrid approach that

combines the object pooling algorithm with frustum culling and

occlusion culling techniques. This method stabilizes frames per

second in real-time and enhances performance, producing

significant results by reducing the number of active objects

processed. It ensures that only characters actively contributing to

rendering and animation are considered, optimizing overall

simulation efficiency.

As a prospective enhancement, we plan to improve our

system by integrating crowd behavior principles to enhance

simulation realism. Additionally, we aim to apply reinforcement

learning for character animation and obstacle avoidance, enabling

adaptive crowd navigation across diverse scenarios. This will

facilitate effective autonomous navigation for multiple agents in

more complex environments.

VII. REFERENCES

[1] Ruiz, S., Hernández, B., Alvarado, A., & Rudomín, I. (2013). Reducing

memory requirements for diverse animated crowds. In Proceedings of Motion on

Games (pp. 77-86).

[2] Beacco, A. (2014, October 16). Simulation, Animation and Rendering of

Crowds in Real-Time. Simulation, Animation and Rendering of Crowds in

Real-Time. https://upcommons.upc.edu/handle/2117/95561.

[3] Liu, P., Chao, Q., Huang, H., Wang, Q., Zhao, Z., Peng, Q., ... & Jin, X.

(2022). Velocity-based dynamic crowd simulation by data-driven optimization.

The Visual Computer, 38(9), 3499-3512.

[4] Toledo, L., De Gyves, O., & Rudomín, I. (2014). Hierarchical level of detail

for varied animated crowds. The Visual Computer, 30, 949-961.

[5] Boukhayma, A., & Boyer, E. (2017, October). Controllable variation synthesis

for surface motion capture. In 2017 International Conference on 3D Vision (3DV)

(pp. 309-317). IEEE.

[6] Hu, K., Haworth, B., Berseth, G., Pavlovic, V., Faloutsos, P., & Kapadia, M.

(2021). Heterogeneous crowd simulation using parametric reinforcement learning.

IEEE Transactions on Visualization and Computer Graphics.

[7] Wang, D., Zhang, J., Jin, J., & Mao, X. (2021). Local collision avoidance

algorithm for a unmanned surface vehicle based on steering maneuver considering

colregs. Ieee Access, 9, 49233-49248.

[8] Yu, Q., Liu, K., Yang, Z., Wang, H., and Yang, Z. (2021). Geometrical risk

evaluation of the collisions between ships and offshore installations using

rulebased Bayesian reasoning.Reliability Eng. System Saf.210, 107474.

doi:10.1016/ j.ress.2021.107474

[9] Tam, C., Bucknall, R., and Greig, A. (2009). Review of collision avoidance

and path planning methods for ships in close range encounters.J. Navigation 62

(3), 455–476. doi:10.1017/S0373463308005134.

[10] Wang, C., Wang, N., Xie, G., and Su, S. F. (2022).“Survey on collision-

avoidance navigation of maritime autonomous surface ships,”inOffshore

robotics(Singapore: Springer), 1–33. doi:10.1007/978-981-16-2078-2_1

[11] Li, Y., Chen, Y., Liu, J., & Huang, T. (2025). Efficient crowd simulation in

complex environment using deep reinforcement learning. Scientific Reports,

15(1), 5403.

[12] Guo, X., Zhang, M., Xie, H., Gu, C., & Liu, Z. (2024). Crowdmogen: Zero-

shot text-driven collective motion generation. arXiv preprint arXiv:2407.06188.

[13] Li, Y., Liu, J., Guan, X., Hou, H., & Huang, T. (2025). Introducing

anisotropic fields for enhanced diversity in crowd simulation. The Visual

Computer, 1-16.

[14] Hernández, A. G. Y., & Alberú, M. del P. S. (2021). Modeling the Interaction

of an Elastic Collision between two Objects. Journal of Physics: Conference

Series, 1929(1), 012016. https://doi.org/10.1088/1742-6596/1929/1/012016

[15] Li, Y., Chen, Y., Liu, J., & Huang, T. (2025). Efficient crowd simulation in

complex environment using deep reinforcement learning. Scientific Reports,

15(1), 5403.

[16] Rempe, D., Luo, Z., Bin Peng, X., Yuan, Y., Kitani, K., Kreis, K., ... &

Litany, O. (2023). Trace and pace: Controllable pedestrian animation via guided

trajectory diffusion. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (pp. 13756-13766).

[17] Colas, A., van Toll, W., Zibrek, K., Hoyet, L., Olivier, A. H., & Pettré, J.

(2022, May). Interaction fields: Intuitive sketch‐based steering behaviors for

crowd simulation. In Computer Graphics Forum (Vol. 41, No. 2, pp. 521-534).

[18] Panayiotou, A., Kyriakou, T., Lemonari, M., Chrysanthou, Y., &

Charalambous, P. (2022, July). Ccp: Configurable crowd profiles. In ACM

SIGGRAPH 2022 conference proceedings (pp. 1-10).

Page 246

