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Edge learning is a distributed approach for training machine learning models using data from 

edge devices. It preserves privacy by avoiding direct data sharing. However, existing 

systems struggle with resource inefficiency, malicious node participation and lack of long-

term sustainability. These challenges reduce performance and discourage participation in 

edge learning. This paper proposes Chiron, a robustness-aware incentive mechanism 

designed to address these issues. Chiron employs a hierarchical reinforcement learning 

(HRL) framework to optimize resource allocation and ensure fair participation. The 

framework focuses on three key components: pricing strategy, resource distribution and 

malicious node detection. Chiron integrates system-level performance and model accuracy 

into its optimization goals, ensuring a balance between efficiency and effectiveness. The 

hierarchical structure includes three layers. The top layer determines the total incentive 

budget to achieve long-term sustainability. The middle layer allocates resources to minimize 

idle time and enhance efficiency. The bottom layer identifies and excludes malicious or lazy 

nodes that negatively impact the education process. By tackle both short-term and long-term 

objectives Chiron ensures fairness and performance stability. Extensive experiments 

validate Chiron’s capabilities using real-world datasets like MNIST and CIFAR-10. Chiron 

demonstrates robust byzantine resistance and supports sustainable edge learning by 

addressing critical gaps in current approaches. This work contributes to the advancement of 

edge learning by presenting a reliable and efficient solution for real-world applications. By 

integrating security, sustainability and performance, Chiron enables edge learning to be both 

practical and impactful in various domains. 
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I. INTRODUCTION 

It A new paradigm of machine learning called edge learning 

updates a global model across a set of data sources in a 

collaborative manner, where the data sources do not share their raw 

data [1]. This paradigm of data management solves two primary 

difficulties of ordinary machine learning with local data, namely 

the protection of data, as well as the excessive communication 

cost. This is done by having the training done on-device and only 

sharing model updates. Edge learning of this nature enables us to 

build quite intelligent systems, especially in privacy-sensitive 

areas. Important challenges coming up with edge learning! On the 

one hand, due to resource constraints in edge devices such as 

computational power, energy and bandwidth, it may be inefficient. 

While, Sybil or unreliable nodes in the network, may reduce the 
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performance of the global model. These nodes may report false or 

malicious updates unintentionally due to resource exhaustion [2] 

or intentionally. The third one is that it is pretty hard to maintain 

the contribution of the edge devices in the learning process for a 

long time. (2) Without proper and strong incentive mechanisms, 

devices even do not join in the cooperation or only cost very little, 

and meaningless resources where no device can be ready to 

contribute reasonable and necessary resource, which would risk the 

success of the whole cooperative process. Drawing on these 

challenges this study introduces Chiron. Chiron operates through 

a HRL framework that guarantees equitable and optimal 

consumption of resources (for the learning process), detection and 

eviction of malicious or lethargic nodes, and the long-term 

resilience of the learning process [3]. Firmly, this introduction 

defines the programs around edge learning and calls a broad rollout 

of Chiron in a system level manner. Edge devices usually entail 

low computational capabilities and resource constraint in terms of 

energy and bandwidth. Training complex models can tax these 

resources, causing delays and inefficiencies. Moreover, the 

variability of devices in an edge network may lead to some devices 

working much faster than others. If not ruled, the rich devices will 

take over, the poor devices will be unable to come together. Edge 

learning has the same decentralized characteristic, making it 

vulnerable to attack from malicious user [4]. An adversarial node 

can purposely provide false updates to cripple the learning 

algorithm. Lazy nodes, on the other hand, may minimize their 

computational effort by submitting low-quality or randomly 

generated updates. Both behaviours can compromise the integrity 

and performance of the global model. Edge learning relies on the 

voluntary participation of devices [5]. However, active devices 

incur costs in terms of energy, computation and communication. 

Without adequate incentives, devices may choose to opt out or 

reduce their contributions, leading to a decline in the quality and 

robustness of the global model. Chiron addresses these challenges 

by integrating robustness, efficiency and sustainability into its 

design.  

It involves a three-layer HRL framework implemented in 

Chiron, which provides the required mechanisms at different levels 

of the incentive mechanism: The first layer involves the long-term 

bucketing where Chiron decides how much bucketing should be 

allocated towards the learning process in total. This budget is what 

is available to use in multiple training round to reward active 

devices. the objective is to allocate incentives in an optimal way 

to keep the system alive and functional for a long time. With the 

help of this layer, short-term needs and long-term needs are 

balanced, preventing resource depletion, thus retaining device 

engagement [6]. Layer 2 focuses on short-term optimization. It 

shares resource across participating devices in each training round. 

The goal of the allocation strategy is to reduce voids time, improve 

the efficiency of resources and balance the fairness of devices. 

This layer must assess the computational power, energy 

availability and communication bandwidth of each device. 

Through distributed balance resource allocation, it increases the 

diversity and speed of the learning process [7]. The third layer 

focuses on ensuring the reliability and integrity of the global model. 

It identifies and excludes malicious or lazy nodes that negatively 

impact the learning process. This is achieved by analysing the 

quality of updates submitted by each node. Nodes that consistently 

submit low-quality or harmful updates are penalized or excluded 

from future rounds. This layer ensures that only trustworthy nodes 

participate, enhancing the overall robustness of the system [8]. 

Chiron incorporates system performance metrics and model 

accuracy into its optimization objectives. By participating at a 

governance level, the economic structures that dictate behaviours 

can be tuned towards the wants of both the system and its future. 

But short-term efficiency cannot come at long-term sustainability 

or model performance. Chiron is modeled after Recursive 

Chaining, used to solve complex optimization problems in a 

hierarchical manner by breaking down to simple ones as sub-

problems [9]. Using these layers, we design the incentivization 

mechanism for Chiron, where each layer has its own kind of target, 

such that both short term and long-term goals can be enforced 

against each other. Chiron can also be adapted to serve many edge 

learning scenarios due to its modular design. Chiron is an 

effective system to detect malicious or lazy nodes. It also ensures 

that the accuracy and integrity of the global model are maintained 

by examining the quality of updates proposed by individual nodes. 

This property is fundamental in decentralized systems where trust 

cannot be assumed [10].  

Chiron has been empirically validated through large-scale 

experiments on real-world datasets such as MNIST and CIFAR-

10. These datasets are standard benchmarks with broad use in 

machine learning research, thus ensuring robustness of the results 

for EDGE learning systems. Chiron shows superior accuracy, 

efficiency and robustness compared to state-of-the-art methods, as 

demonstrated by experiments. Chiron is a breakthrough in edge 

learning technology. For real-world applications, it offers a 

powerful and efficient solution by tackling key challenges like 

resource constraints, malicious behaviour and sustainability. Key 

contributions of this research include: 

•A novel HRL-based framework for optimizing incentives 

in edge learning. 

•An integrated approach that balances performance, 

efficiency and security. 

•A scalable solution that can adapt to different edge 

learning scenarios and datasets. 

Chiron offers a comprehensive solution to the challenges of 

edge learning. Its hierarchical design, integration of performance 

metrics and robustness against malicious behaviour make it a 

practical and impactful tool for advancing the field. By enabling 

efficient, secure and sustainable edge learning. Chiron paves the 

way for the widespread adoption of this innovative paradigm. 

 

II. RELATED WORK 

Edge learning is a widespread paradigm for decentralized 

machine learning to collaboratively learn models while preserving 

privacy among devices. This reviewing work focuses on the 

fundamental challenges as well as existing solutions in terms of 

incentive mechanisms, resource optimization, robustness and HRL 

within the edge learning domain. Chiron serves within the context 

of these studies according to the review, emphasizing its 

innovations in robustness, efficiency and sustainability. Edge 

learning is sustained through incentive mechanisms. There has 

been a fair number of studies being done around the incentive 

mechanisms for encouraging the edge devices to make use of its 

resources. Wang et al. Edge devices are rewarded based on their 

energy consumption and contributions in the game-theoretic model 

proposed in [11]. Although good for balancing interactions with 

minimal resources spent and guests rewarded, this approach fails 

to prevent bad behaviour or encourage long-term engagement. 

According to [12] developed upon this notion by modeling 

incentive schemes in contract theory. Their approach links rewards 

with the quality of contributions, thus enhancing the model 

performance. In [13] introduced an auction-based model to 

optimize resource contributions dynamically. Their mechanism 
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prioritizes high-quality contributions but does not integrate model 

performance into its design. Chiron overcomes these limitations by 

combining model accuracy and fairness into its incentive decisions. 

In [14] proposed a federated learning framework that includes 

trust-based incentives to mitigate malicious contributions. 

However, this approach requires extensive monitoring, which 

increases overhead.  

Chiron reduces such overhead by using lightweight 

reinforcement learning to detect and exclude harmful nodes. 

Resource allocation is crucial in edge learning due to the limited 

computational, energy and bandwidth resources of edge devices. 

Various studies have addressed these constraints. According to 

[15] introduced a scheduling algorithm to minimize latency by 

optimizing resource allocation among edge devices. This approach 

showed improved efficiency but struggled with fairness across 

heterogeneous devices. For [16] proposed a decentralized resource 

optimization framework that reduces communication overhead. 

While effective, the framework does not include mechanisms to 

identify and address malicious behavior. In [17] developed a 

reinforcement learning-based solution for dynamic resource 

allocation. This method demonstrated significant improvements in 

efficiency. However, it lacked robustness mechanisms to handle 

malicious nodes or low-quality contributions. In [18] combined 

resource optimization with device reputation, ensuring fair 

allocation based on past performance. While this method improved 

fairness, it failed to incorporate dynamic adaptability, which 

Chiron achieves through its multi-layer HRL design. Chiron 

integrates resource optimization into its incentive mechanism, 

dynamically adapting to device performance and addressing 

heterogeneity across devices.  

Maintaining robustness is critical in edge learning to ensure 

the integrity of the global model. Malicious nodes can introduce 

incorrect updates, significantly degrading model performance. In 

[19] introduced byzantine-robust aggregation methods that filter 

outliers based on statistical analysis. While effective, these 

methods require significant computational resources, making them 

unsuitable for real-time edge learning.  

According to [20] proposed a reputation-based system 

where devices are scored based on their contributions over time. 

High-reputation devices are prioritized in model aggregation. This 

approach adds robustness but requires extensive data storage and 

monitoring. In [21] introduced a blockchain-based framework to 

secure model updates. While blockchain provides transparency and 

trust, its computational overhead limits scalability in resource-

constrained environments. In [22] explored federated learning with 

adaptive aggregation, where the system adjusts weights based on 

contribution quality. This approach is computationally efficient but 

does not address long-term sustainability. Chiron advances 

robustness by integrating byzantine resilience into its hierarchical 

framework. 

HRL is highly applicable for such complex optimization 

problems at the Edge learning. HRL breaks down tasks, allowing 

focused and effective solutions. According to [23] proved HRL 

works well in multi-agent systems, encouraging its deployment in 

edge learning. Their triple layer philosophy inspired Chiron’s 

three-layer design, each of which has a particular optimization 

goal. Tang et al. HRL was used in a task allocation problem for 

distributed systems by [24]. The proposed method improved 

resource utilization at the expense of malicious contributions. In 

[25] HRL with federated learning where both resource allocation 

and model aggregation were optimized. However, their approach 

did not include incentive mechanisms from the ground level, while 

Chiron does it smoothly. Within the HRL framework that extends 

to Chiron from previous work, Chiron is able to tackle long-term 

sustainability (as an aggregate of time) with real-time efficiency 

and robustness within the same framework. 

 

II.1 BACKGROUND WORK 

This section provides an overview of two key concepts Edge 

Learning and Deep Reinforcement Learning (DRL). These 

frameworks support the proposed incentive-driven, Byzantine-

resistant approach to edge learning. Edge learning addresses the 

privacy concerns inherent in distributed training scenarios by 

enabling collaborative model training without exposing raw data. 

Before introducing the decentralized scenario, we first describe the 

traditional centralized training approach for deep learning models. 

Given a deep learning model, let   denote its parameters. The 

model's loss function is defined as j jf( , x , y ) , here jx  and jy  

represent the data and label of a given sample j. For simplicity, we 

abbreviate j jf( , x , y )  as jf ( ) . The objective of training is to 

update   such that the average loss across all samples is 

minimized. Mathematically, this is expressed as: 

 

*
j

j D

1
= argmin f ( )

| D |
 



                                 (1) 

 

Here, D is the dataset. In decentralized edge learning, data is 

distributed among several edge nodes, each with its private dataset 

iD . For edge node i, the loss function over its dataset is: 

 

i

i j

j Di

1
F ( ) = f ( )

| D |
 



                          (2) 

 

The global loss function across all edge nodes is weighted by 

their dataset sizes and given as: 

 
N

i i i

i=1

N

i i

i=1

| D | F ( )

F( )

| D |

 





=




                           (3) 

 

Here, i {0,1}   is an indicator of whether edge node i 

participates in the training round. The goal of edge learning is to 

collaboratively train the global model by solving: 

 
* argmin F( ) =                                    (4) 

 

This optimization is achieved through distributed gradient 

descent. During each round, edge nodes perform   epochs of local 

training on their private datasets. The local update for edge node i 

is: 

 

i,ki,k i,k i i,k j jF ( , x , y )    −               (5) 

Here,   is the learning rate and k represents the current 

training round. After local training, edge nodes send their updated 

parameters i,k
  to the central server, which aggregates them to 

form the new global model: 
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=




                           (6) 

 

This iterative process allows edge nodes to collaboratively 

train a global model without compromising data privacy. DRL 

combines RL with deep neural networks to optimize an agent's 

decision-making policy through interaction with an environment. 

The agent observes the current state ts  of the environment, selects 

an action ta  according to its policy t(s )  and receives a reward 

tr . This interaction evolves the environment to the next state t+1s . 

The goal of DRL is to maximize the expected cumulative reward: 

 
T

t
t t

t=0

R = r(s ,a )                             (7) 

 

Here, [0,1]   is a discount factor for future rewards. A 

well-known DRL algorithm is Proximal Policy Optimization 

(PPO), which operates within the Actor-Critic framework. This 

framework consists of two networks first is the Actor Network 

which generates actions based on the current policy and second is 

the Critic Network used to estimate the value of a state V (s) , 

representing the expected future rewards. The value function 

lV (s )  is defined as: 

 

t
l t t l

t=l

V (s ) = E r(s ,a ) s ,  
 

 
  
 ∣                       (8) 

 

Using the state value, the advantage of an action can be 

calculated as: 

 

t t t t t t+1 tA (s ,a ) = r(s ,a ) + V(s ) - V(s )                (9) 

 

PPO modifies the traditional policy gradient loss function by 

introducing a clipping factor ò to stabilize updates: 

 

( )PPO t tL ( ) = E min r( )A ,clip(r( ),1 ,1 )A   − + ò ò        (10) 

 

Here, r( )  is the probability ratio between the new and old 

policies. DRL's ability to handle high-dimensional states and learn 

optimal policies through experience makes it a suitable choice for 

addressing complex problems like incentive-driven edge learning. 

 

II.2 SYSTEM MODEL 

The system model in this study is based on a parameter 

server architecture, incorporating multiple edge nodes. The model 

facilitates collaborative learning while it addresses computational 

and communication challenges. The architecture consists of 

Parameter Server which manages the global model and aggregates 

updates from edge nodes. Edge Nodes are used to perform local 

training using their data and contribute updates to the global model. 

The training occurs in rounds where edge nodes receive the global 

model, perform local updates and send results back to the server 

for aggregation. The next round begins only after all nodes finish 

their computations, introducing potential idle times. Each edge 

node’s computation time depends on its local data size, CPU cycles 

per bit, and frequency: 

 

i i
cmp,i,k

i,k

c d
T =




                                  (11) 

 

Here,  is the Number of local epochs, ic is the CPU cycles per 

bit, id is the Local data size and i,k is the CPU frequency in round 

k. Communication time is determined by the global model size   

and the uplink rate i,kR : 

 

com,i,k
i,k

T =
R


                                  (12) 

 

The total time for edge node i is the sum of computation and 

communication times: 

 

i,k cmp,i,k com,i,kT = T + T                               (13) 

 

The overall round time is dictated by the slowest node: 

 

round i N i,kT = max T                                 (14) 

 

Faster nodes experience idle times as: 

 

idle,i,k round i,kT = T - T                               (15) 

 

Energy consumption comprises computational and communication 

components: 

 
2

cmp,i,k i i i i,kE = c d                             (16a) 

com,i,k i com,i,kE = Tò                                  (16b) 

i,k cmp,i,k com,i,kE = E + E                            (16c) 

 

Here, i  and iò  are energy coefficients. Edge nodes are 

incentivized based on their contributions. For edge node i: 

 

i,k i,k i,k e i,ku = p - E                        (17) 

 

Here, i,kp  is the price per CPU cycle and e  reflects the 

importance of energy costs. The system aims to optimize model 

accuracy while minimizing costs. Given a budget 0 , the 

remaining budget after k rounds is: 

 
K N

k 0 i,k i,k i,k

k=1 i=1

p   = −                      (18) 

 

The utility function of the learning process is: 

 
K

a g,K t k K

k=1

u = A( ) T   − +                     (19) 

Here, g,KA( )  denotes model accuracy, a  and t  are 

weight parameters. 
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II. 3 PROBLEM FORMATION AND ANALYSIS 

This section elaborates on the strategies of the parameter 

server and edge nodes to optimize edge learning while ensuring 

robustness against Byzantine failures. The strategies aim to balance 

utility, computational efficiency and budget allocation under 

privacy constraints. The optimization problem is defined for both 

edge nodes and the parameter server. The key objective is to 

maximize the utility for both entities while maintaining efficiency 

in computation and communication. Each edge node i aims to 

maximize its utility i,ku  by adjusting its computational 

contribution i,k  during the k-th training round. The problem is 

formulated as: 

i,ki,k i,k

i,k i,max

i,k

OP : max u

subject to :

 

(0, ]

,

,

u 0



 




 


 

                    (21) 

 

The utility i,ku  is a function of the received bonus, 

computation energy, and communication energy is given in 

equation (17). The parameter server seeks to optimize its pricing 

strategy i,kp  to maximize utility u. The optimization problem is 

given as: 

 

i,kPS p

K N

i,k i,k i,k 0

k=1 i=1

OP : max u,

subject to :  p

 

  












     (22) 

 

Here, 0  is the total budget and i,k  indicates whether edge 

node i participates in round k. The optimal strategies for edge nodes 

and the parameter server are analysed to address both honest and 

dishonest nodes. Honest nodes participate in training only if their 

utility is positive. The optimal CPU frequency for an honest edge 

node i is determined by: 

 

i,k*
i,k

e i i i

p

2 c d


 
=                                (23) 

 

Here, i , ic  and id  represent hardware coefficients and data 

size respectively. The maximum utility is: 

 
2
i,k*

i,k e i com,i,k
e i i i

p
T

4 c d
 

 
= − ò              (24) 

 

Dishonest nodes include lazy and malicious nodes. Lazy 

nodes generate random updates without training, while malicious 

nodes send harmful updates. Their behaviour is modelled as: 

 
0

i,k i,k
  = +                                  (25) 

Here,   is random noise. Their utility function is: 

 

i,k i,k i,k e i com,i,kp T  = − ò                  (26) 

 

The parameter server aims to minimize idle time while 

ensuring efficient training. Idle time for node i is given in equation 

(15). The pricing strategy is optimized to satisfy: 

idle,kT = 0                                    (27) 

 

The incentive mechanism ensures participation and fairness. 

Edge nodes receive bonuses proportional to their contributions, and 

malicious nodes are identified and excluded. The utility of the 

parameter server over K rounds is expressed as: 

 
K

a g,K t k K

k=1

A( ) T    = − +                   (28) 

 

Here, g,KA( )  is the model accuracy and K  is the remaining 

budget. The energy consumption of edge node i is given in (16a), 

(16b) and (16c). Time efficiency is optimized by aligning training 

times across nodes, ensuring: 

 
N

i,k

i=1
eff

round

T

r = 1
NT




                               (29) 

 

III. HIERARCHICAL REINFORCEMENT LEARNING 

DESIGN 

Write HRL is employed to optimize the incentive 

mechanism in edge learning systems, ensuring robustness and 

efficiency. This section elaborates on the three-layer HRL 

framework, agent-specific designs and its advantages over 

traditional DRL. Edge learning environments present unique 

challenges. It includes dishonest edge nodes which has lazy and 

malicious nodes degrade system performance. Privacy Concerns is 

used as server access to edge node raw data and hardware details is 

restricted. Dynamic Environments are used as training data 

distributions and resource availability shift over time. To address 

these challenges, the HRL approach decomposes complex tasks 

into three sub-tasks handled by dedicated DRL agents Price volume 

determination, Bonus distribution and Edge node selection. 

 

 
Figure 1: Edge Learning Operational Process. 

Source: Authors, (2025). 

 

The Figure 1 illustrates the architecture of the proposed 

framework for edge learning using a Hierarchical DRL Agent. It 

highlights three main components: Local Training, Model 

Aggregation and Hierarchical DRL Agent. In the Local Training 

phase, multiple edge nodes (referred to as clients) independently 

train local models using their private datasets. Each client performs 

computations locally to preserve privacy and avoid data transfer. 

After training, the clients upload their locally updated models to a 

central Parameter Server. The server manages model aggregation 

by collecting updates from all participating edge nodes and 

integrating them to update the global model. This global model is 
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then sent back to the clients through model downloading, ensuring 

continuous and iterative learning. The Parameter Server interacts 

directly with the Hierarchical DRL Agent for incentive mechanism 

optimization. The server provides real-time states and rewards to 

the DRL agent which evaluates the system's performance and sends 

back actions to guide the incentive mechanisms and edge node 

participation. The Hierarchical DRL Agent has two submodules 

Experience Storage, which records interaction history for further 

learning and Training which continuously improves the DRL 

policy based on past experiences. This design enables robust 

decision-making allowing the system to select reliable edge nodes 

and reward contributions. It also ensures efficient and fair resource 

utilization, resulting in improved global model accuracy and 

system performance. 

The HRL framework comprises three agents, first is the 

Exterior Agent (Price Volume Calculator) which determines the 

overall budget allocation, second is the Middle Agent (Price 

Partition Distributor) which allocates the budget across edge nodes 

to minimize idle time and the third is the Inner Agent (Edge Node 

Selector) which selects participating edge nodes, expelling 

malicious ones. Each agent interacts with its environment and 

learns from experience tuples (s,a, r,s ) , where s represents the 

state, a the action, r the reward and s' the subsequent state. The 

state, action, and reward functions for each agent are defined as 

follows. Exterior Agent is used as Price Volume Calculator which 

combines historical and current information. 

 
E
k k-L k-1 k-L k-1 k-L k-1 ks { , , ,p ,…,p ,T ,…,T , ,k}  =             (30) 

 

Here,  , p , and T  denote CPU frequencies, pricing strategies, 

and training times, respectively, from the past L rounds. 

Action: Sets the total budget: 

 
E
k total,ka = {p }                              (31) 

 

Reward: Encourages long-term utility: 

 
E
k a k k-1 t k kr = (A( ) A( )) T +    − −          (32) 

 

Here, a  and t  are weight parameters for accuracy improvement 

and training time. 

State: Takes the total budget as input: 

 
M
k total,ks = {p }                                       (33) 

 

Action: Allocates the budget proportionally among nodes: 

 
N

M
k 1,k N,k i,k

i=1

a = { , , }, where 1.   =                 (34) 

 

Reward: Encourages time consistency: 

 
N

M
k idle,i,k

i=1

r = - T                              (35) 

 

Here, idle,i,kT  is the idle time of edge node i. 

State: Incorporates model weights, price allocations, and remaining 

budget: 

 
I
k 1,k N,k 1,k N,k g ks = {p ,…,p , , , , , ,k}                       (36) 

 

Action: Determines the probability of node participation: 

 
I
k 1,k N,k i,ka = { , , }, [0,1]                         (37) 

 

Reward: Balances accuracy and budget consumption: 

 
N

I
k a k+1 k i,k i,k i,k

i=1

r = (A( ) A( )) p    − −               (38) 

 

Each agent employs Proximal Policy Optimization (PPO) 

for training. The workflow includes-Initializing policy parameters, 

collecting experience tuples (s, a, r, s') and Updating actor and critic 

networks to optimize rewards. The PPO loss functions are: 

 

( )actor t tL ( ) = E min r( )A ,clip(r( ),1 ,1 )A    − + ò ò      (39) 

 
2

critic t t+1 tL = (r + V(s ) - V(s ))                     (40) 

 

Here, r( )  is the probability ratio and tA  the advantage. 

Advantages of HRL include Task Decomposition which Simplifies 

optimization by dividing tasks into manageable sub-tasks, 

Enhanced Exploration expands the action space across three layers 

and Robustness adapts to dynamic environments and identifies 

malicious nodes. 

 

IV. RESULTS AND DISCUSSIONS 

It This section evaluates the effectiveness of the proposed 

HRL system, Chiron. The evaluation involves comprehensive 

experiments designed to assess global model accuracy, time 

efficiency, and system utility in diverse environments. Robustness 

against dishonest edge nodes and scalability under varying system 

conditions is also analysed. The experiments utilize real-world 

datasets and models under systematically controlled settings. The 

datasets include MNIST, Fashion-MNIST and CIFAR-10. Models 

of CNNs are MNIST and Fashion-MNIST which are two 5x5 

convolutional layers followed by max pooling and CIFAR-10 of 

LeNet with three 5x5 convolutional layers followed by max 

pooling. The edge node settings are CPU cycle requirements for 

processing one bit are ic ~ U(1, 2)  GHz. Communication times 

com,iT ~ U(10,20)  seconds. Implementation Framework has DRL 

agents which are implemented using the Tianshou framework with 

PPO. Actor and critic learning rates decay by 95% every 20 rounds. 

Three primary metrics are employed to assess performance, first is 

the Global Model Accuracy gA( )  which is evaluated using test 

datasets. Second is the Time Efficiency effr  which measures valid 

training time utilization: 
N

i,k

i=1
eff

round

T

r =
NT


                                 (41) 

 

Here, i,kT  is the training time of edge node i in round k. 

Third is the server utility u which combines accuracy, time 

efficiency and budget usage is given in equation (19). Chiron’s 
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performance is compared with a DRL-based baseline and a greedy 

approach. Server Utility is used as Chiron achieves higher utility 

across budgets. Chiron maintains accuracy without sacrificing 

performance for budget constraints. Chiron achieves nearly 100%-

time efficiency, minimizing idle times. Experiments with 10 to 100 

edge nodes highlight Chiron’s scalability are Utility Trends where 

Chiron’s utility remains above 25, while baselines drop 

significantly with more nodes, Time efficiency exceeds 80% 

preserving budget for additional rounds. Chiron’s performance is 

evaluated in environments with malicious and lazy nodes. 

Malicious Nodes are Chiron outperforms baselines, maintaining 

accuracy and utility even when 70% of nodes are malicious. In 

Lazy Nodes Chiron resists budget wastage from lazy nodes, 

remaining robust up to 60% laziness. Mixed Environments has 

Chiron which excels with honest, malicious and lazy nodes 

achieving the best metrics. In Budget Utilization Chiron’s 

hierarchical design prevents budget overuse, enabling sustainable 

training. Malicious Node Exclusion include the inner agent 

accurately filters harmful updates, preserving model quality. Long-

Term Optimization has adaptive pricing strategies ensure robust 

utility growth. Chiron consistently outperforms baselines in 

accuracy, utility and robustness. The results validate the efficacy of 

hierarchical reinforcement learning in addressing the challenges of 

edge learning environments. 

The Figure 2 shows the accuracy versus number of rounds 

for three methods: Chiron, DRL-Based, and Greedy. Chiron 

achieves the highest accuracy across all rounds, starting at 0.6 and 

reaching almost 0.95 at round 50. The DRL-Based method 

performs slightly lower, beginning at 0.6 and gradually improving 

to 0.85 at round 50. The Greedy method exhibits the slowest 

improvement, starting at 0.55 and reaching approximately 0.8 by 

round 50. From the graph, we see that Chiron consistently 

outperforms the other methods in accuracy throughout the training 

rounds. The difference between Chiron and the DRL-Based 

method is noticeable, especially after round 20, with a gap of about 

0.05 to 0.1. Similarly, the gap between Chiron and the Greedy 

method widens with increasing rounds, highlighting Chiron's 

superior learning capability. DRL-Based maintains a steady and 

moderate improvement, while Greedy shows the least effective 

performance. This indicates that Chiron is more efficient in 

learning and adapting compared to the other approaches. 

 

 
Figure 2: Accuracy versus number of rounds. 

Source: Authors, (2025). 

 

The Figure 3 shows the Performance under CIFAR-10 

when varying the total budgets for Server Utility vs. Total Budget 

for three methods: Chiron, DRL-Based, and Greedy. Chiron 

consistently achieves the highest server utility at every budget 

level. At a budget of 50, its utility starts at around 30, increasing 

linearly to reach nearly 70 at a budget of 300. DRL-Based is 

average, you get around an initial 25 utility that grows to 

approximately 60 for about 300 in budget. The impulse approach 

is the least efficient, achieving a utility of 20 and approximately 

55 at the highest budget. We observe that Chiron consistently 

outperforms all the other methods for all budget levels. As the 

budget is increased, the difference between Chiron and DRL-Based 

grows, resulting in a utility gap of 5 to 10 points—between 

candidate budgets that range from 0 to 60. Also, the ever-growing 

distance between Chiron and Greedy confirms Chiron's effective 

resource utilization. These two methods turned out to provide the 

slowest improvement, as we can see that the utility curve for the 

Greedy method also starts to flatten shortly after the budget has 

approached the 300 mark. The well-shown trends demonstrated are 

reflecting Chiron's better optimization strategies represented by 

DRL-Based and Greedy approaches. 

 

 
Figure 3: Performance under CIFAR-10 when varying the total 

budgets for server utility. 

Source: Authors, (2025). 

The Figure 4 illustrates the Performance under CIFAR-10 

when varying the total budgets for Global Model Accuracy vs. 

Total Budget for three methods: Chiron, DRL-Based, and Greedy. 

Chiron achieves the highest accuracy at all budget levels. It starts 

at approximately 0.7 with a budget of 50 and steadily increases to 

about 0.87 at a budget of 300. The DRL-Based method performs 

moderately. It starts at 0.7 similar to Chiron, but grows more 

slowly, reaching around 0.82 at a budget of 300. The Greedy 

method has the lowest accuracy. It starts at 0.65, then moves up 

gradually to around 0.78 with the highest budget. Times mention 

that Chiron always outperforms the others in terms of accuracy, 

thus it better utilizes the budget. Over the time period considered, 

the worst gap between Chiron and DRL-Based is around 0.05 as 

the budget increases. The same can also be said for the gap between 

Chiron and Greedy, as throughout the tests there is a consistent gap 

of 0.1 to 0.12. These trends highlight Chiron's better optimization 

as well as Chiron's ability to improve the models performance 

across all budget levels while DRL-Based gets moderate gains and 

Greedy simply can't obtain high accuracy. In budget-constrained 

environments, maximizing resource-use efficiency is essential, 

and this only supports the importance of that. 
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Figure 4: Performance under CIFAR-10 when varying the total 

budgets for Global Model Accuracy. 

Source: Authors, (2025). 

 

The Figure 5 shows Performance under CIFAR-10 when 

varying the total budgets for time efficiency versus total budget for 

three methods: Chiron, DRL-Based, and Greedy. Chiron starts at a 

time efficiency of around 0.85 for a budget of 50 and steadily 

increases to nearly 0.97 at a budget of 300. DRL-Based begins at 

approximately 0.8 and gradually rises to about 0.9 as the budget 

increases. Greedy starts at 0.75 and increases modestly to around 

0.87 by the end of the budget range. The results highlight that 

Chiron outperforms the other methods in time efficiency across all 

budget levels. The difference between Chiron and DRL-Based is 

noticeable, with a gap of approximately 0.05 to 0.07 throughout. 

Similarly, Chiron maintains a significant advantage over Greedy, 

with a time efficiency difference of about 0.1 at most budget levels. 

The Greedy method shows the slowest improvement, indicating 

less efficient use of resources to minimize idle time. These trends 

underline Chiron's ability to achieve high time efficiency, 

particularly as the budget increases, making it the most effective 

method for optimizing resource utilization. 

 

 
Figure 5: Performance under CIFAR-10 when varying the total 

budgets for Time Efficiency. 

Source: Authors, (2025). 

 

The Figure 6 shows accuracy versus percentage of 

malicious nodes for three methods: Chiron, DRL-Based, and 

Greedy. Chiron starts with an accuracy of 0.85 when there are no 

malicious nodes. Its accuracy gradually declines to approximately 

0.65 as malicious nodes increase to 70%. The DRL-Based method 

begins at an accuracy of 0.8 and decreases more sharply, reaching 

around 0.6 at 70% malicious nodes. The Greedy method 

consistently delivers the worst performance, beginning at 0.75 and 

falling to 0.5 when 70% of the nodes are malicious. This show that 

under the all conditions, Chiron achieves the highest accuracy 

indicates its strong robustness to malicious node. Chiron's resultant 

accuracy in comparison to conjectured DRL-Based model varies 

between 0.05 to 0.1 throughout the range, which indicates Chiron's 

improved resistance against adversarial malicious behaviour. It can 

be seen that the Greedy method has the steepest decline in the 

accuracy, which shows that it is vulnerable to malicious nodes. 

With increasing number of malicious nodes, Chiron's optimization 

and fault tolerance enables it to out perform Greedy as the gap 

increases. This analysis highlights that Chiron demonstrates 

proficiency in robustness to noisy environments in comparison to 

the other methods. 

 

 
Figure 6: Accuracy versus Percentage of Malicious Nodes. 

Source: Authors, (2025). 

 

The Figure 7 depicts idle time versus number of edge 

nodes for three methods: Chiron, DRL-Based, and Greedy. Chiron 

has the lowest idle time across all edge node counts. Its idle time 

starts at about 10 seconds for 10 edge nodes and increases linearly 

to approximately 30 seconds for 100 edge nodes. DRL-Based 

exhibits moderate idle time, starting at 12 seconds for 10 nodes and 

growing steadily to about 45 seconds for 100 nodes. The Greedy 

method performs the worst, starting at 15 seconds and rising 

sharply to nearly 70 seconds for 100 edge nodes. This analysis 

highlights the relative shrug-ability of Chiron with respect to idle 

time with increasing edge nodes. This gap is even bigge when 

comparing Chiron and DRL-Based, culminating in a 15 seconds 

difference at 100 edge nodes. Likewise, the difference between 

Chiron and Greedy becomes. Similar to before, we have a huge gap 

of almost 40 seconds between Chiron and Greedy at 100 nodes. 

This shows that Chiron handles idle time efficiently even at a large 

scale and is more efficient and scalable than DRL-Based 

approaches and Greedy approaches. This highlights the benefits of 

Chiron in efficiently utilizing resources and reducing latency in 

distributed edge learning systems. 
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Figure 7: Ideal time versus Number of Edge Nodes. 

Source: Authors, (2025). 

 

The Figure 8 presents the convergence of DRL agents over 

episodes for three agents: the inner agent, middle agent, and 

exterior agent. In subplot (a), the Inner Agent begins with a reward 

close to 0 in the initial episodes. The reward steadily increases to 

approximately 20 by the 50th episode, showing a smooth 

convergence pattern. Subplot (b) depicts the Middle Agent, where 

the reward starts near 0 and rises steadily, converging at around 15 

by episode 50. Subplot (c) shows the Exterior Agent, whose reward 

also starts near 0, increases steadily and converges at about 12 by 

the 50th episode. These plots demonstrate that all three agents 

successfully learn and converge within the 50 episodes. The inner 

agent achieves the highest reward, indicating it has the most 

significant impact or effectiveness in the system. The middle agent 

converges at a slightly lower reward, while the exterior agent 

achieves the lowest reward. This suggests a hierarchical 

distribution of complexity and contribution among the agents. The 

steady increase in rewards across episodes also reflects stable 

training and effective optimization strategies for all agents. 

Overall, the figure highlights that the DRL framework effectively 

enables each agent to achieve its respective learning objectives. 

 

 
Figure 8: Convergence of DRL Agents. 

Source: Authors, (2025). 

 

The Figure 9 illustrates global model accuracy versus 

percentage of malicious nodes for three methods: Chiron, DRL-

Based, and Greedy. Chiron starts at an accuracy of 0.85 when there 

are no malicious nodes and gradually decreases to approximately 

0.7 as malicious nodes increase to 70%. DRL-Based begins with 

an accuracy of 0.8 and declines steadily, reaching around 0.6 at 

70% malicious nodes. Greedy has the lowest accuracy, starting at 

0.75 and dropping sharply to approximately 0.55 by the end. The 

results highlight Chiron's superior performance in maintaining 

accuracy under increasing malicious nodes. The difference 

between Chiron and DRL-Based grows as malicious nodes 

increase, with a gap of about 0.1 at higher percentages. Similarly, 

the gap between Chiron and Greedy is even more pronounced, 

emphasizing Chiron's robustness in hostile environments. DRL-

Based shows moderate resistance, though Greedy performs poorly, 

especially as the percentage of malicious nodes grows. This 

comparison clearly demonstrates Chiron’s effectiveness in 

mitigating the impact of malicious behaviour and maintaining 

reliable model accuracy. 

 

 
Figure 9: Global model accuracy versus percentage of malicious 

nodes in malicious environment. 

Source: Authors, (2025). 

The Figure 10 shows global model accuracy versus 

percentage of lazy nodes for three methods: Chiron, DRL-Based, 

and Greedy. Chiron starts with an accuracy of 0.85 at 0% lazy 

nodes and gradually decreases to around 0.7 when lazy nodes reach 

70%. DRL-Based begins with an accuracy of approximately 0.8 

and declines steadily, reaching 0.65 at 70% lazy nodes. Greedy 

starts at 0.75 and drops more sharply, reaching 0.6 at the maximum 

percentage of lazy nodes. This figure demonstrates Chiron's 

superior robustness against lazy nodes, maintaining higher 

accuracy across all percentages. The gap between Chiron and 

DRL-Based grows as lazy nodes increase, reaching about 0.05 at 

70%. Similarly, the gap between Chiron and Greedy is even more 

significant, with a difference of approximately 0.1 at higher 

percentages. DRL-Based performs moderately but struggles more 

as the proportion of lazy nodes increases. Greedy shows the 

steepest decline, indicating its inability to handle high levels of 

laziness. These results emphasize Chiron's effectiveness in 

minimizing the impact of lazy nodes and maintaining reliable 

model accuracy in such scenarios. 
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Figure 10: Global model accuracy versus percentage of lazy 

nodes in lazy environment. 

Source: Authors, (2025). 

 

The Figure 11 shows server utility versus number of edge 

nodes for three methods: Chiron, DRL-Based, and Greedy. Chiron 

achieves the highest server utility for all edge node counts. It starts 

at around 20 for 10 edge nodes and steadily increases to 

approximately 90 for 100 edge nodes. DRL-Based has moderate 

server utility. It begins at around 18 for 10 edge nodes and grows 

to approximately 80 at 100 edge nodes. The Greedy method has the 

lowest performance, starting at around 15 for 10 edge nodes and 

reaching only about 70 for 100 edge nodes. This graph highlights 

Chiron's superior ability to maximize server utility as the number 

of edge nodes increases. The gap between Chiron and DRL-Based 

widens as more edge nodes are added, reaching a difference of 

about 10 utility units at 100 edge nodes. Similarly, the difference 

between Chiron and Greedy grows significantly, reaching nearly 

20 utility units at the same point. The Greedy method consistently 

lags behind, reflecting its inefficiency in resource allocation 

compared to the other methods. This analysis underscores Chiron's 

advantage in optimizing server utility, especially in large-scale 

distributed systems. It performs better in leveraging additional 

edge nodes, demonstrating its robustness and scalability. 
 

 
Figure 11: Server utility versus number of edge nodes 

Source: Authors, (2025). 
 

V. CONCLUSIONS 

The research addresses the crucial problem of designing an 

efficient incentive mechanism for edge learning systems, 

emphasizing three primary objectives. The first is to incorporate 

model performance metrics into the optimization process to 

guarantee high-quality outputs. The second is ensuring system 

sustainability by implementing long-term optimization strategies. 

Finally, it focuses on identifying and mitigating the effects of 

malicious and lazy edge nodes to enhance the system's robustness. 

To achieve these objectives, the paper introduces a HRL 

framework comprising three distinct layers. 

This design decomposes the complex task into three sub-

tasks: pricing determination for long-term utility maximization, 

bonus distribution for short-term optimization and edge node 

selection for excluding underperforming or malicious participants. 

This three-tiered approach ensures that the system remains 

efficient, adaptive and robust against dishonest behaviours in the 

dynamic edge learning environment proposed method 

demonstrates substantial improvements compared to state-of-the-

art mechanisms.  

Experimental evaluations on real-world datasets, like 

CIFAR-10, reveal an increase in system accuracy and total utility 

by 14.96% and 12.66%, respectively. By expelling lazy and 

malicious nodes, the system maintains higher reliability and 

performance consistency. Additionally, the framework ensures 

effective budget utilization and scalability, making it suitable for 

future network scenarios like beyond 5G (B5G). 

The researchers emphasize the importance of continuing 

exploration in areas like advanced node behaviour analysis, 

energy-aware strategies and integration into emerging network 

architectures. This secures the practical implications of the HRL-

based incentive mechanism, which balances efficiency, robustness 

and sustainability in edge learning systems. By addressing existing 

limitations, it paves the way for more reliable and effective 

distributed machine learning frameworks. 
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