
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.52, p. 226-136. March./April., 2025.

DOI: https://doi.org/10.5935/jetia. v11i52.1637

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

ENHANCING INCENTIVE SCHEMES IN EDGE COMPUTING THROUGH

HIERARCHICAL REINFORCEMENT LEARNING

Gowtham R1, Vatsala Anand2, Yadati Vijaya Suresh3, Kasetty Lakshmi Narasimha4

R. Anil Kumar5,V.Saraswathi6

1Computing and Information Technology, REVA University, Bangalore, Karnataka, India.
2Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

3Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal-518501, Andhra Pradesh, India.
4SVR Engineering College, Nandyal, AndhraPradesh, India.

5Aditya University, Surampalem, India.
6Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, AndhraPradesh, India

1http://orcid.org/0009-0006-6556-1089 , 2http://orcid.org/0000-0001-6143-250X , 3http://orcid.org/0009-0005-5490-4990
4http://orcid.org/ 0000-0003-0569-3769 , 5http://orcid.org/0000-0003-0032-2555 6http://orcid.org/0009-0007-3374-8858

Email: gowthamramakrishna19@gmail.com, vatsala.anand@chitkara.edu.in, suri.yvs@gmail.com,

kasetty.narsi@gmail.com, anidecs@gmail.com, saraswathiece89@gmail.com

ARTICLE INFO ABSTRACT

Article History

Received: February 13, 2025

Revised: March 20, 2025

Accepted: March 15, 2025

Published: April 30, 2025

Edge learning is a distributed approach for training machine learning models using data from

edge devices. It preserves privacy by avoiding direct data sharing. However, existing

systems struggle with resource inefficiency, malicious node participation and lack of long-

term sustainability. These challenges reduce performance and discourage participation in

edge learning. This paper proposes Chiron, a robustness-aware incentive mechanism

designed to address these issues. Chiron employs a hierarchical reinforcement learning

(HRL) framework to optimize resource allocation and ensure fair participation. The

framework focuses on three key components: pricing strategy, resource distribution and

malicious node detection. Chiron integrates system-level performance and model accuracy

into its optimization goals, ensuring a balance between efficiency and effectiveness. The

hierarchical structure includes three layers. The top layer determines the total incentive

budget to achieve long-term sustainability. The middle layer allocates resources to minimize

idle time and enhance efficiency. The bottom layer identifies and excludes malicious or lazy

nodes that negatively impact the education process. By tackle both short-term and long-term

objectives Chiron ensures fairness and performance stability. Extensive experiments

validate Chiron’s capabilities using real-world datasets like MNIST and CIFAR-10. Chiron

demonstrates robust byzantine resistance and supports sustainable edge learning by

addressing critical gaps in current approaches. This work contributes to the advancement of

edge learning by presenting a reliable and efficient solution for real-world applications. By

integrating security, sustainability and performance, Chiron enables edge learning to be both

practical and impactful in various domains.

Keywords:

Machine learning

Hierarchical reinforcement

Edge computing

Server utility

Greedy algorithm.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

It A new paradigm of machine learning called edge learning

updates a global model across a set of data sources in a

collaborative manner, where the data sources do not share their raw

data [1]. This paradigm of data management solves two primary

difficulties of ordinary machine learning with local data, namely

the protection of data, as well as the excessive communication

cost. This is done by having the training done on-device and only

sharing model updates. Edge learning of this nature enables us to

build quite intelligent systems, especially in privacy-sensitive

areas. Important challenges coming up with edge learning! On the

one hand, due to resource constraints in edge devices such as

computational power, energy and bandwidth, it may be inefficient.

While, Sybil or unreliable nodes in the network, may reduce the

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

performance of the global model. These nodes may report false or

malicious updates unintentionally due to resource exhaustion [2]

or intentionally. The third one is that it is pretty hard to maintain

the contribution of the edge devices in the learning process for a

long time. (2) Without proper and strong incentive mechanisms,

devices even do not join in the cooperation or only cost very little,

and meaningless resources where no device can be ready to

contribute reasonable and necessary resource, which would risk the

success of the whole cooperative process. Drawing on these

challenges this study introduces Chiron. Chiron operates through

a HRL framework that guarantees equitable and optimal

consumption of resources (for the learning process), detection and

eviction of malicious or lethargic nodes, and the long-term

resilience of the learning process [3]. Firmly, this introduction

defines the programs around edge learning and calls a broad rollout

of Chiron in a system level manner. Edge devices usually entail

low computational capabilities and resource constraint in terms of

energy and bandwidth. Training complex models can tax these

resources, causing delays and inefficiencies. Moreover, the

variability of devices in an edge network may lead to some devices

working much faster than others. If not ruled, the rich devices will

take over, the poor devices will be unable to come together. Edge

learning has the same decentralized characteristic, making it

vulnerable to attack from malicious user [4]. An adversarial node

can purposely provide false updates to cripple the learning

algorithm. Lazy nodes, on the other hand, may minimize their

computational effort by submitting low-quality or randomly

generated updates. Both behaviours can compromise the integrity

and performance of the global model. Edge learning relies on the

voluntary participation of devices [5]. However, active devices

incur costs in terms of energy, computation and communication.

Without adequate incentives, devices may choose to opt out or

reduce their contributions, leading to a decline in the quality and

robustness of the global model. Chiron addresses these challenges

by integrating robustness, efficiency and sustainability into its

design.

It involves a three-layer HRL framework implemented in

Chiron, which provides the required mechanisms at different levels

of the incentive mechanism: The first layer involves the long-term

bucketing where Chiron decides how much bucketing should be

allocated towards the learning process in total. This budget is what

is available to use in multiple training round to reward active

devices. the objective is to allocate incentives in an optimal way

to keep the system alive and functional for a long time. With the

help of this layer, short-term needs and long-term needs are

balanced, preventing resource depletion, thus retaining device

engagement [6]. Layer 2 focuses on short-term optimization. It

shares resource across participating devices in each training round.

The goal of the allocation strategy is to reduce voids time, improve

the efficiency of resources and balance the fairness of devices.

This layer must assess the computational power, energy

availability and communication bandwidth of each device.

Through distributed balance resource allocation, it increases the

diversity and speed of the learning process [7]. The third layer

focuses on ensuring the reliability and integrity of the global model.

It identifies and excludes malicious or lazy nodes that negatively

impact the learning process. This is achieved by analysing the

quality of updates submitted by each node. Nodes that consistently

submit low-quality or harmful updates are penalized or excluded

from future rounds. This layer ensures that only trustworthy nodes

participate, enhancing the overall robustness of the system [8].

Chiron incorporates system performance metrics and model

accuracy into its optimization objectives. By participating at a

governance level, the economic structures that dictate behaviours

can be tuned towards the wants of both the system and its future.

But short-term efficiency cannot come at long-term sustainability

or model performance. Chiron is modeled after Recursive

Chaining, used to solve complex optimization problems in a

hierarchical manner by breaking down to simple ones as sub-

problems [9]. Using these layers, we design the incentivization

mechanism for Chiron, where each layer has its own kind of target,

such that both short term and long-term goals can be enforced

against each other. Chiron can also be adapted to serve many edge

learning scenarios due to its modular design. Chiron is an

effective system to detect malicious or lazy nodes. It also ensures

that the accuracy and integrity of the global model are maintained

by examining the quality of updates proposed by individual nodes.

This property is fundamental in decentralized systems where trust

cannot be assumed [10].

Chiron has been empirically validated through large-scale

experiments on real-world datasets such as MNIST and CIFAR-

10. These datasets are standard benchmarks with broad use in

machine learning research, thus ensuring robustness of the results

for EDGE learning systems. Chiron shows superior accuracy,

efficiency and robustness compared to state-of-the-art methods, as

demonstrated by experiments. Chiron is a breakthrough in edge

learning technology. For real-world applications, it offers a

powerful and efficient solution by tackling key challenges like

resource constraints, malicious behaviour and sustainability. Key

contributions of this research include:

•A novel HRL-based framework for optimizing incentives

in edge learning.

•An integrated approach that balances performance,

efficiency and security.

•A scalable solution that can adapt to different edge

learning scenarios and datasets.

Chiron offers a comprehensive solution to the challenges of

edge learning. Its hierarchical design, integration of performance

metrics and robustness against malicious behaviour make it a

practical and impactful tool for advancing the field. By enabling

efficient, secure and sustainable edge learning. Chiron paves the

way for the widespread adoption of this innovative paradigm.

II. RELATED WORK

Edge learning is a widespread paradigm for decentralized

machine learning to collaboratively learn models while preserving

privacy among devices. This reviewing work focuses on the

fundamental challenges as well as existing solutions in terms of

incentive mechanisms, resource optimization, robustness and HRL

within the edge learning domain. Chiron serves within the context

of these studies according to the review, emphasizing its

innovations in robustness, efficiency and sustainability. Edge

learning is sustained through incentive mechanisms. There has

been a fair number of studies being done around the incentive

mechanisms for encouraging the edge devices to make use of its

resources. Wang et al. Edge devices are rewarded based on their

energy consumption and contributions in the game-theoretic model

proposed in [11]. Although good for balancing interactions with

minimal resources spent and guests rewarded, this approach fails

to prevent bad behaviour or encourage long-term engagement.

According to [12] developed upon this notion by modeling

incentive schemes in contract theory. Their approach links rewards

with the quality of contributions, thus enhancing the model

performance. In [13] introduced an auction-based model to

optimize resource contributions dynamically. Their mechanism

Page 227

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

prioritizes high-quality contributions but does not integrate model

performance into its design. Chiron overcomes these limitations by

combining model accuracy and fairness into its incentive decisions.

In [14] proposed a federated learning framework that includes

trust-based incentives to mitigate malicious contributions.

However, this approach requires extensive monitoring, which

increases overhead.

Chiron reduces such overhead by using lightweight

reinforcement learning to detect and exclude harmful nodes.

Resource allocation is crucial in edge learning due to the limited

computational, energy and bandwidth resources of edge devices.

Various studies have addressed these constraints. According to

[15] introduced a scheduling algorithm to minimize latency by

optimizing resource allocation among edge devices. This approach

showed improved efficiency but struggled with fairness across

heterogeneous devices. For [16] proposed a decentralized resource

optimization framework that reduces communication overhead.

While effective, the framework does not include mechanisms to

identify and address malicious behavior. In [17] developed a

reinforcement learning-based solution for dynamic resource

allocation. This method demonstrated significant improvements in

efficiency. However, it lacked robustness mechanisms to handle

malicious nodes or low-quality contributions. In [18] combined

resource optimization with device reputation, ensuring fair

allocation based on past performance. While this method improved

fairness, it failed to incorporate dynamic adaptability, which

Chiron achieves through its multi-layer HRL design. Chiron

integrates resource optimization into its incentive mechanism,

dynamically adapting to device performance and addressing

heterogeneity across devices.

Maintaining robustness is critical in edge learning to ensure

the integrity of the global model. Malicious nodes can introduce

incorrect updates, significantly degrading model performance. In

[19] introduced byzantine-robust aggregation methods that filter

outliers based on statistical analysis. While effective, these

methods require significant computational resources, making them

unsuitable for real-time edge learning.

According to [20] proposed a reputation-based system

where devices are scored based on their contributions over time.

High-reputation devices are prioritized in model aggregation. This

approach adds robustness but requires extensive data storage and

monitoring. In [21] introduced a blockchain-based framework to

secure model updates. While blockchain provides transparency and

trust, its computational overhead limits scalability in resource-

constrained environments. In [22] explored federated learning with

adaptive aggregation, where the system adjusts weights based on

contribution quality. This approach is computationally efficient but

does not address long-term sustainability. Chiron advances

robustness by integrating byzantine resilience into its hierarchical

framework.

HRL is highly applicable for such complex optimization

problems at the Edge learning. HRL breaks down tasks, allowing

focused and effective solutions. According to [23] proved HRL

works well in multi-agent systems, encouraging its deployment in

edge learning. Their triple layer philosophy inspired Chiron’s

three-layer design, each of which has a particular optimization

goal. Tang et al. HRL was used in a task allocation problem for

distributed systems by [24]. The proposed method improved

resource utilization at the expense of malicious contributions. In

[25] HRL with federated learning where both resource allocation

and model aggregation were optimized. However, their approach

did not include incentive mechanisms from the ground level, while

Chiron does it smoothly. Within the HRL framework that extends

to Chiron from previous work, Chiron is able to tackle long-term

sustainability (as an aggregate of time) with real-time efficiency

and robustness within the same framework.

II.1 BACKGROUND WORK

This section provides an overview of two key concepts Edge

Learning and Deep Reinforcement Learning (DRL). These

frameworks support the proposed incentive-driven, Byzantine-

resistant approach to edge learning. Edge learning addresses the

privacy concerns inherent in distributed training scenarios by

enabling collaborative model training without exposing raw data.

Before introducing the decentralized scenario, we first describe the

traditional centralized training approach for deep learning models.

Given a deep learning model, let denote its parameters. The

model's loss function is defined as j jf(, x , y) , here jx and jy

represent the data and label of a given sample j. For simplicity, we

abbreviate j jf(, x , y) as jf () . The objective of training is to

update such that the average loss across all samples is

minimized. Mathematically, this is expressed as:

*
j

j D

1
= argmin f ()

| D |

 (1)

Here, D is the dataset. In decentralized edge learning, data is

distributed among several edge nodes, each with its private dataset

iD . For edge node i, the loss function over its dataset is:

i

i j

j Di

1
F () = f ()

| D |

 (2)

The global loss function across all edge nodes is weighted by

their dataset sizes and given as:

N

i i i

i=1

N

i i

i=1

| D | F ()

F()

| D |

=

 (3)

Here, i {0,1} is an indicator of whether edge node i

participates in the training round. The goal of edge learning is to

collaboratively train the global model by solving:

* argmin F() = (4)

This optimization is achieved through distributed gradient

descent. During each round, edge nodes perform epochs of local

training on their private datasets. The local update for edge node i

is:

i,ki,k i,k i i,k j jF (, x , y) − (5)

Here, is the learning rate and k represents the current

training round. After local training, edge nodes send their updated

parameters i,k
 to the central server, which aggregates them to

form the new global model:

Page 228

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

N

i,k i i,k

i=1
g,k+1 N

i,k i

i=1

| D |

| D |

=

 (6)

This iterative process allows edge nodes to collaboratively

train a global model without compromising data privacy. DRL

combines RL with deep neural networks to optimize an agent's

decision-making policy through interaction with an environment.

The agent observes the current state ts of the environment, selects

an action ta according to its policy t(s) and receives a reward

tr . This interaction evolves the environment to the next state t+1s .

The goal of DRL is to maximize the expected cumulative reward:

T

t
t t

t=0

R = r(s ,a) (7)

Here, [0,1] is a discount factor for future rewards. A

well-known DRL algorithm is Proximal Policy Optimization

(PPO), which operates within the Actor-Critic framework. This

framework consists of two networks first is the Actor Network

which generates actions based on the current policy and second is

the Critic Network used to estimate the value of a state V (s) ,

representing the expected future rewards. The value function

lV (s) is defined as:

t
l t t l

t=l

V (s) = E r(s ,a) s ,

 ∣ (8)

Using the state value, the advantage of an action can be

calculated as:

t t t t t t+1 tA (s ,a) = r(s ,a) + V(s) - V(s) (9)

PPO modifies the traditional policy gradient loss function by

introducing a clipping factor ò to stabilize updates:

()PPO t tL () = E min r()A ,clip(r(),1 ,1)A − + ò ò (10)

Here, r() is the probability ratio between the new and old

policies. DRL's ability to handle high-dimensional states and learn

optimal policies through experience makes it a suitable choice for

addressing complex problems like incentive-driven edge learning.

II.2 SYSTEM MODEL

The system model in this study is based on a parameter

server architecture, incorporating multiple edge nodes. The model

facilitates collaborative learning while it addresses computational

and communication challenges. The architecture consists of

Parameter Server which manages the global model and aggregates

updates from edge nodes. Edge Nodes are used to perform local

training using their data and contribute updates to the global model.

The training occurs in rounds where edge nodes receive the global

model, perform local updates and send results back to the server

for aggregation. The next round begins only after all nodes finish

their computations, introducing potential idle times. Each edge

node’s computation time depends on its local data size, CPU cycles

per bit, and frequency:

i i
cmp,i,k

i,k

c d
T =

 (11)

Here, is the Number of local epochs, ic is the CPU cycles per

bit, id is the Local data size and i,k is the CPU frequency in round

k. Communication time is determined by the global model size

and the uplink rate i,kR :

com,i,k
i,k

T =
R

 (12)

The total time for edge node i is the sum of computation and

communication times:

i,k cmp,i,k com,i,kT = T + T (13)

The overall round time is dictated by the slowest node:

round i N i,kT = max T (14)

Faster nodes experience idle times as:

idle,i,k round i,kT = T - T (15)

Energy consumption comprises computational and communication

components:

2

cmp,i,k i i i i,kE = c d (16a)

com,i,k i com,i,kE = Tò (16b)

i,k cmp,i,k com,i,kE = E + E (16c)

Here, i and iò are energy coefficients. Edge nodes are

incentivized based on their contributions. For edge node i:

i,k i,k i,k e i,ku = p - E (17)

Here, i,kp is the price per CPU cycle and e reflects the

importance of energy costs. The system aims to optimize model

accuracy while minimizing costs. Given a budget 0 , the

remaining budget after k rounds is:

K N

k 0 i,k i,k i,k

k=1 i=1

p = − (18)

The utility function of the learning process is:

K

a g,K t k K

k=1

u = A() T − + (19)

Here, g,KA() denotes model accuracy, a and t are

weight parameters.

Page 229

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

II. 3 PROBLEM FORMATION AND ANALYSIS

This section elaborates on the strategies of the parameter

server and edge nodes to optimize edge learning while ensuring

robustness against Byzantine failures. The strategies aim to balance

utility, computational efficiency and budget allocation under

privacy constraints. The optimization problem is defined for both

edge nodes and the parameter server. The key objective is to

maximize the utility for both entities while maintaining efficiency

in computation and communication. Each edge node i aims to

maximize its utility i,ku by adjusting its computational

contribution i,k during the k-th training round. The problem is

formulated as:

i,ki,k i,k

i,k i,max

i,k

OP : max u

subject to :

(0,]

,

,

u 0

 (21)

The utility i,ku is a function of the received bonus,

computation energy, and communication energy is given in

equation (17). The parameter server seeks to optimize its pricing

strategy i,kp to maximize utility u. The optimization problem is

given as:

i,kPS p

K N

i,k i,k i,k 0

k=1 i=1

OP : max u,

subject to : p

 (22)

Here, 0 is the total budget and i,k indicates whether edge

node i participates in round k. The optimal strategies for edge nodes

and the parameter server are analysed to address both honest and

dishonest nodes. Honest nodes participate in training only if their

utility is positive. The optimal CPU frequency for an honest edge

node i is determined by:

i,k*
i,k

e i i i

p

2 c d

= (23)

Here, i , ic and id represent hardware coefficients and data

size respectively. The maximum utility is:

2
i,k*

i,k e i com,i,k
e i i i

p
T

4 c d

= − ò (24)

Dishonest nodes include lazy and malicious nodes. Lazy

nodes generate random updates without training, while malicious

nodes send harmful updates. Their behaviour is modelled as:

0

i,k i,k
 = + (25)

Here, is random noise. Their utility function is:

i,k i,k i,k e i com,i,kp T = − ò (26)

The parameter server aims to minimize idle time while

ensuring efficient training. Idle time for node i is given in equation

(15). The pricing strategy is optimized to satisfy:

idle,kT = 0 (27)

The incentive mechanism ensures participation and fairness.

Edge nodes receive bonuses proportional to their contributions, and

malicious nodes are identified and excluded. The utility of the

parameter server over K rounds is expressed as:

K

a g,K t k K

k=1

A() T = − + (28)

Here, g,KA() is the model accuracy and K is the remaining

budget. The energy consumption of edge node i is given in (16a),

(16b) and (16c). Time efficiency is optimized by aligning training

times across nodes, ensuring:

N

i,k

i=1
eff

round

T

r = 1
NT

 (29)

III. HIERARCHICAL REINFORCEMENT LEARNING

DESIGN

Write HRL is employed to optimize the incentive

mechanism in edge learning systems, ensuring robustness and

efficiency. This section elaborates on the three-layer HRL

framework, agent-specific designs and its advantages over

traditional DRL. Edge learning environments present unique

challenges. It includes dishonest edge nodes which has lazy and

malicious nodes degrade system performance. Privacy Concerns is

used as server access to edge node raw data and hardware details is

restricted. Dynamic Environments are used as training data

distributions and resource availability shift over time. To address

these challenges, the HRL approach decomposes complex tasks

into three sub-tasks handled by dedicated DRL agents Price volume

determination, Bonus distribution and Edge node selection.

Figure 1: Edge Learning Operational Process.

Source: Authors, (2025).

The Figure 1 illustrates the architecture of the proposed

framework for edge learning using a Hierarchical DRL Agent. It

highlights three main components: Local Training, Model

Aggregation and Hierarchical DRL Agent. In the Local Training

phase, multiple edge nodes (referred to as clients) independently

train local models using their private datasets. Each client performs

computations locally to preserve privacy and avoid data transfer.

After training, the clients upload their locally updated models to a

central Parameter Server. The server manages model aggregation

by collecting updates from all participating edge nodes and

integrating them to update the global model. This global model is

Page 230

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

then sent back to the clients through model downloading, ensuring

continuous and iterative learning. The Parameter Server interacts

directly with the Hierarchical DRL Agent for incentive mechanism

optimization. The server provides real-time states and rewards to

the DRL agent which evaluates the system's performance and sends

back actions to guide the incentive mechanisms and edge node

participation. The Hierarchical DRL Agent has two submodules

Experience Storage, which records interaction history for further

learning and Training which continuously improves the DRL

policy based on past experiences. This design enables robust

decision-making allowing the system to select reliable edge nodes

and reward contributions. It also ensures efficient and fair resource

utilization, resulting in improved global model accuracy and

system performance.

The HRL framework comprises three agents, first is the

Exterior Agent (Price Volume Calculator) which determines the

overall budget allocation, second is the Middle Agent (Price

Partition Distributor) which allocates the budget across edge nodes

to minimize idle time and the third is the Inner Agent (Edge Node

Selector) which selects participating edge nodes, expelling

malicious ones. Each agent interacts with its environment and

learns from experience tuples (s,a, r,s) , where s represents the

state, a the action, r the reward and s' the subsequent state. The

state, action, and reward functions for each agent are defined as

follows. Exterior Agent is used as Price Volume Calculator which

combines historical and current information.

E
k k-L k-1 k-L k-1 k-L k-1 ks { , , ,p ,…,p ,T ,…,T , ,k} = (30)

Here, , p , and T denote CPU frequencies, pricing strategies,

and training times, respectively, from the past L rounds.

Action: Sets the total budget:

E
k total,ka = {p } (31)

Reward: Encourages long-term utility:

E
k a k k-1 t k kr = (A() A()) T + − − (32)

Here, a and t are weight parameters for accuracy improvement

and training time.

State: Takes the total budget as input:

M
k total,ks = {p } (33)

Action: Allocates the budget proportionally among nodes:

N

M
k 1,k N,k i,k

i=1

a = { , , }, where 1. = (34)

Reward: Encourages time consistency:

N

M
k idle,i,k

i=1

r = - T (35)

Here, idle,i,kT is the idle time of edge node i.

State: Incorporates model weights, price allocations, and remaining

budget:

I
k 1,k N,k 1,k N,k g ks = {p ,…,p , , , , , ,k} (36)

Action: Determines the probability of node participation:

I
k 1,k N,k i,ka = { , , }, [0,1] (37)

Reward: Balances accuracy and budget consumption:

N

I
k a k+1 k i,k i,k i,k

i=1

r = (A() A()) p − − (38)

Each agent employs Proximal Policy Optimization (PPO)

for training. The workflow includes-Initializing policy parameters,

collecting experience tuples (s, a, r, s') and Updating actor and critic

networks to optimize rewards. The PPO loss functions are:

()actor t tL () = E min r()A ,clip(r(),1 ,1)A − + ò ò (39)

2

critic t t+1 tL = (r + V(s) - V(s)) (40)

Here, r() is the probability ratio and tA the advantage.

Advantages of HRL include Task Decomposition which Simplifies

optimization by dividing tasks into manageable sub-tasks,

Enhanced Exploration expands the action space across three layers

and Robustness adapts to dynamic environments and identifies

malicious nodes.

IV. RESULTS AND DISCUSSIONS

It This section evaluates the effectiveness of the proposed

HRL system, Chiron. The evaluation involves comprehensive

experiments designed to assess global model accuracy, time

efficiency, and system utility in diverse environments. Robustness

against dishonest edge nodes and scalability under varying system

conditions is also analysed. The experiments utilize real-world

datasets and models under systematically controlled settings. The

datasets include MNIST, Fashion-MNIST and CIFAR-10. Models

of CNNs are MNIST and Fashion-MNIST which are two 5x5

convolutional layers followed by max pooling and CIFAR-10 of

LeNet with three 5x5 convolutional layers followed by max

pooling. The edge node settings are CPU cycle requirements for

processing one bit are ic ~ U(1, 2) GHz. Communication times

com,iT ~ U(10,20) seconds. Implementation Framework has DRL

agents which are implemented using the Tianshou framework with

PPO. Actor and critic learning rates decay by 95% every 20 rounds.

Three primary metrics are employed to assess performance, first is

the Global Model Accuracy gA() which is evaluated using test

datasets. Second is the Time Efficiency effr which measures valid

training time utilization:
N

i,k

i=1
eff

round

T

r =
NT

 (41)

Here, i,kT is the training time of edge node i in round k.

Third is the server utility u which combines accuracy, time

efficiency and budget usage is given in equation (19). Chiron’s

Page 231

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

performance is compared with a DRL-based baseline and a greedy

approach. Server Utility is used as Chiron achieves higher utility

across budgets. Chiron maintains accuracy without sacrificing

performance for budget constraints. Chiron achieves nearly 100%-

time efficiency, minimizing idle times. Experiments with 10 to 100

edge nodes highlight Chiron’s scalability are Utility Trends where

Chiron’s utility remains above 25, while baselines drop

significantly with more nodes, Time efficiency exceeds 80%

preserving budget for additional rounds. Chiron’s performance is

evaluated in environments with malicious and lazy nodes.

Malicious Nodes are Chiron outperforms baselines, maintaining

accuracy and utility even when 70% of nodes are malicious. In

Lazy Nodes Chiron resists budget wastage from lazy nodes,

remaining robust up to 60% laziness. Mixed Environments has

Chiron which excels with honest, malicious and lazy nodes

achieving the best metrics. In Budget Utilization Chiron’s

hierarchical design prevents budget overuse, enabling sustainable

training. Malicious Node Exclusion include the inner agent

accurately filters harmful updates, preserving model quality. Long-

Term Optimization has adaptive pricing strategies ensure robust

utility growth. Chiron consistently outperforms baselines in

accuracy, utility and robustness. The results validate the efficacy of

hierarchical reinforcement learning in addressing the challenges of

edge learning environments.

The Figure 2 shows the accuracy versus number of rounds

for three methods: Chiron, DRL-Based, and Greedy. Chiron

achieves the highest accuracy across all rounds, starting at 0.6 and

reaching almost 0.95 at round 50. The DRL-Based method

performs slightly lower, beginning at 0.6 and gradually improving

to 0.85 at round 50. The Greedy method exhibits the slowest

improvement, starting at 0.55 and reaching approximately 0.8 by

round 50. From the graph, we see that Chiron consistently

outperforms the other methods in accuracy throughout the training

rounds. The difference between Chiron and the DRL-Based

method is noticeable, especially after round 20, with a gap of about

0.05 to 0.1. Similarly, the gap between Chiron and the Greedy

method widens with increasing rounds, highlighting Chiron's

superior learning capability. DRL-Based maintains a steady and

moderate improvement, while Greedy shows the least effective

performance. This indicates that Chiron is more efficient in

learning and adapting compared to the other approaches.

Figure 2: Accuracy versus number of rounds.

Source: Authors, (2025).

The Figure 3 shows the Performance under CIFAR-10

when varying the total budgets for Server Utility vs. Total Budget

for three methods: Chiron, DRL-Based, and Greedy. Chiron

consistently achieves the highest server utility at every budget

level. At a budget of 50, its utility starts at around 30, increasing

linearly to reach nearly 70 at a budget of 300. DRL-Based is

average, you get around an initial 25 utility that grows to

approximately 60 for about 300 in budget. The impulse approach

is the least efficient, achieving a utility of 20 and approximately

55 at the highest budget. We observe that Chiron consistently

outperforms all the other methods for all budget levels. As the

budget is increased, the difference between Chiron and DRL-Based

grows, resulting in a utility gap of 5 to 10 points—between

candidate budgets that range from 0 to 60. Also, the ever-growing

distance between Chiron and Greedy confirms Chiron's effective

resource utilization. These two methods turned out to provide the

slowest improvement, as we can see that the utility curve for the

Greedy method also starts to flatten shortly after the budget has

approached the 300 mark. The well-shown trends demonstrated are

reflecting Chiron's better optimization strategies represented by

DRL-Based and Greedy approaches.

Figure 3: Performance under CIFAR-10 when varying the total

budgets for server utility.

Source: Authors, (2025).

The Figure 4 illustrates the Performance under CIFAR-10

when varying the total budgets for Global Model Accuracy vs.

Total Budget for three methods: Chiron, DRL-Based, and Greedy.

Chiron achieves the highest accuracy at all budget levels. It starts

at approximately 0.7 with a budget of 50 and steadily increases to

about 0.87 at a budget of 300. The DRL-Based method performs

moderately. It starts at 0.7 similar to Chiron, but grows more

slowly, reaching around 0.82 at a budget of 300. The Greedy

method has the lowest accuracy. It starts at 0.65, then moves up

gradually to around 0.78 with the highest budget. Times mention

that Chiron always outperforms the others in terms of accuracy,

thus it better utilizes the budget. Over the time period considered,

the worst gap between Chiron and DRL-Based is around 0.05 as

the budget increases. The same can also be said for the gap between

Chiron and Greedy, as throughout the tests there is a consistent gap

of 0.1 to 0.12. These trends highlight Chiron's better optimization

as well as Chiron's ability to improve the models performance

across all budget levels while DRL-Based gets moderate gains and

Greedy simply can't obtain high accuracy. In budget-constrained

environments, maximizing resource-use efficiency is essential,

and this only supports the importance of that.

Page 232

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

Figure 4: Performance under CIFAR-10 when varying the total

budgets for Global Model Accuracy.

Source: Authors, (2025).

The Figure 5 shows Performance under CIFAR-10 when

varying the total budgets for time efficiency versus total budget for

three methods: Chiron, DRL-Based, and Greedy. Chiron starts at a

time efficiency of around 0.85 for a budget of 50 and steadily

increases to nearly 0.97 at a budget of 300. DRL-Based begins at

approximately 0.8 and gradually rises to about 0.9 as the budget

increases. Greedy starts at 0.75 and increases modestly to around

0.87 by the end of the budget range. The results highlight that

Chiron outperforms the other methods in time efficiency across all

budget levels. The difference between Chiron and DRL-Based is

noticeable, with a gap of approximately 0.05 to 0.07 throughout.

Similarly, Chiron maintains a significant advantage over Greedy,

with a time efficiency difference of about 0.1 at most budget levels.

The Greedy method shows the slowest improvement, indicating

less efficient use of resources to minimize idle time. These trends

underline Chiron's ability to achieve high time efficiency,

particularly as the budget increases, making it the most effective

method for optimizing resource utilization.

Figure 5: Performance under CIFAR-10 when varying the total

budgets for Time Efficiency.

Source: Authors, (2025).

The Figure 6 shows accuracy versus percentage of

malicious nodes for three methods: Chiron, DRL-Based, and

Greedy. Chiron starts with an accuracy of 0.85 when there are no

malicious nodes. Its accuracy gradually declines to approximately

0.65 as malicious nodes increase to 70%. The DRL-Based method

begins at an accuracy of 0.8 and decreases more sharply, reaching

around 0.6 at 70% malicious nodes. The Greedy method

consistently delivers the worst performance, beginning at 0.75 and

falling to 0.5 when 70% of the nodes are malicious. This show that

under the all conditions, Chiron achieves the highest accuracy

indicates its strong robustness to malicious node. Chiron's resultant

accuracy in comparison to conjectured DRL-Based model varies

between 0.05 to 0.1 throughout the range, which indicates Chiron's

improved resistance against adversarial malicious behaviour. It can

be seen that the Greedy method has the steepest decline in the

accuracy, which shows that it is vulnerable to malicious nodes.

With increasing number of malicious nodes, Chiron's optimization

and fault tolerance enables it to out perform Greedy as the gap

increases. This analysis highlights that Chiron demonstrates

proficiency in robustness to noisy environments in comparison to

the other methods.

Figure 6: Accuracy versus Percentage of Malicious Nodes.

Source: Authors, (2025).

The Figure 7 depicts idle time versus number of edge

nodes for three methods: Chiron, DRL-Based, and Greedy. Chiron

has the lowest idle time across all edge node counts. Its idle time

starts at about 10 seconds for 10 edge nodes and increases linearly

to approximately 30 seconds for 100 edge nodes. DRL-Based

exhibits moderate idle time, starting at 12 seconds for 10 nodes and

growing steadily to about 45 seconds for 100 nodes. The Greedy

method performs the worst, starting at 15 seconds and rising

sharply to nearly 70 seconds for 100 edge nodes. This analysis

highlights the relative shrug-ability of Chiron with respect to idle

time with increasing edge nodes. This gap is even bigge when

comparing Chiron and DRL-Based, culminating in a 15 seconds

difference at 100 edge nodes. Likewise, the difference between

Chiron and Greedy becomes. Similar to before, we have a huge gap

of almost 40 seconds between Chiron and Greedy at 100 nodes.

This shows that Chiron handles idle time efficiently even at a large

scale and is more efficient and scalable than DRL-Based

approaches and Greedy approaches. This highlights the benefits of

Chiron in efficiently utilizing resources and reducing latency in

distributed edge learning systems.

Page 233

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

Figure 7: Ideal time versus Number of Edge Nodes.

Source: Authors, (2025).

The Figure 8 presents the convergence of DRL agents over

episodes for three agents: the inner agent, middle agent, and

exterior agent. In subplot (a), the Inner Agent begins with a reward

close to 0 in the initial episodes. The reward steadily increases to

approximately 20 by the 50th episode, showing a smooth

convergence pattern. Subplot (b) depicts the Middle Agent, where

the reward starts near 0 and rises steadily, converging at around 15

by episode 50. Subplot (c) shows the Exterior Agent, whose reward

also starts near 0, increases steadily and converges at about 12 by

the 50th episode. These plots demonstrate that all three agents

successfully learn and converge within the 50 episodes. The inner

agent achieves the highest reward, indicating it has the most

significant impact or effectiveness in the system. The middle agent

converges at a slightly lower reward, while the exterior agent

achieves the lowest reward. This suggests a hierarchical

distribution of complexity and contribution among the agents. The

steady increase in rewards across episodes also reflects stable

training and effective optimization strategies for all agents.

Overall, the figure highlights that the DRL framework effectively

enables each agent to achieve its respective learning objectives.

Figure 8: Convergence of DRL Agents.

Source: Authors, (2025).

The Figure 9 illustrates global model accuracy versus

percentage of malicious nodes for three methods: Chiron, DRL-

Based, and Greedy. Chiron starts at an accuracy of 0.85 when there

are no malicious nodes and gradually decreases to approximately

0.7 as malicious nodes increase to 70%. DRL-Based begins with

an accuracy of 0.8 and declines steadily, reaching around 0.6 at

70% malicious nodes. Greedy has the lowest accuracy, starting at

0.75 and dropping sharply to approximately 0.55 by the end. The

results highlight Chiron's superior performance in maintaining

accuracy under increasing malicious nodes. The difference

between Chiron and DRL-Based grows as malicious nodes

increase, with a gap of about 0.1 at higher percentages. Similarly,

the gap between Chiron and Greedy is even more pronounced,

emphasizing Chiron's robustness in hostile environments. DRL-

Based shows moderate resistance, though Greedy performs poorly,

especially as the percentage of malicious nodes grows. This

comparison clearly demonstrates Chiron’s effectiveness in

mitigating the impact of malicious behaviour and maintaining

reliable model accuracy.

Figure 9: Global model accuracy versus percentage of malicious

nodes in malicious environment.

Source: Authors, (2025).

The Figure 10 shows global model accuracy versus

percentage of lazy nodes for three methods: Chiron, DRL-Based,

and Greedy. Chiron starts with an accuracy of 0.85 at 0% lazy

nodes and gradually decreases to around 0.7 when lazy nodes reach

70%. DRL-Based begins with an accuracy of approximately 0.8

and declines steadily, reaching 0.65 at 70% lazy nodes. Greedy

starts at 0.75 and drops more sharply, reaching 0.6 at the maximum

percentage of lazy nodes. This figure demonstrates Chiron's

superior robustness against lazy nodes, maintaining higher

accuracy across all percentages. The gap between Chiron and

DRL-Based grows as lazy nodes increase, reaching about 0.05 at

70%. Similarly, the gap between Chiron and Greedy is even more

significant, with a difference of approximately 0.1 at higher

percentages. DRL-Based performs moderately but struggles more

as the proportion of lazy nodes increases. Greedy shows the

steepest decline, indicating its inability to handle high levels of

laziness. These results emphasize Chiron's effectiveness in

minimizing the impact of lazy nodes and maintaining reliable

model accuracy in such scenarios.

Page 234

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

Figure 10: Global model accuracy versus percentage of lazy

nodes in lazy environment.

Source: Authors, (2025).

The Figure 11 shows server utility versus number of edge

nodes for three methods: Chiron, DRL-Based, and Greedy. Chiron

achieves the highest server utility for all edge node counts. It starts

at around 20 for 10 edge nodes and steadily increases to

approximately 90 for 100 edge nodes. DRL-Based has moderate

server utility. It begins at around 18 for 10 edge nodes and grows

to approximately 80 at 100 edge nodes. The Greedy method has the

lowest performance, starting at around 15 for 10 edge nodes and

reaching only about 70 for 100 edge nodes. This graph highlights

Chiron's superior ability to maximize server utility as the number

of edge nodes increases. The gap between Chiron and DRL-Based

widens as more edge nodes are added, reaching a difference of

about 10 utility units at 100 edge nodes. Similarly, the difference

between Chiron and Greedy grows significantly, reaching nearly

20 utility units at the same point. The Greedy method consistently

lags behind, reflecting its inefficiency in resource allocation

compared to the other methods. This analysis underscores Chiron's

advantage in optimizing server utility, especially in large-scale

distributed systems. It performs better in leveraging additional

edge nodes, demonstrating its robustness and scalability.

Figure 11: Server utility versus number of edge nodes

Source: Authors, (2025).

V. CONCLUSIONS

The research addresses the crucial problem of designing an

efficient incentive mechanism for edge learning systems,

emphasizing three primary objectives. The first is to incorporate

model performance metrics into the optimization process to

guarantee high-quality outputs. The second is ensuring system

sustainability by implementing long-term optimization strategies.

Finally, it focuses on identifying and mitigating the effects of

malicious and lazy edge nodes to enhance the system's robustness.

To achieve these objectives, the paper introduces a HRL

framework comprising three distinct layers.

This design decomposes the complex task into three sub-

tasks: pricing determination for long-term utility maximization,

bonus distribution for short-term optimization and edge node

selection for excluding underperforming or malicious participants.

This three-tiered approach ensures that the system remains

efficient, adaptive and robust against dishonest behaviours in the

dynamic edge learning environment proposed method

demonstrates substantial improvements compared to state-of-the-

art mechanisms.

Experimental evaluations on real-world datasets, like

CIFAR-10, reveal an increase in system accuracy and total utility

by 14.96% and 12.66%, respectively. By expelling lazy and

malicious nodes, the system maintains higher reliability and

performance consistency. Additionally, the framework ensures

effective budget utilization and scalability, making it suitable for

future network scenarios like beyond 5G (B5G).

The researchers emphasize the importance of continuing

exploration in areas like advanced node behaviour analysis,

energy-aware strategies and integration into emerging network

architectures. This secures the practical implications of the HRL-

based incentive mechanism, which balances efficiency, robustness

and sustainability in edge learning systems. By addressing existing

limitations, it paves the way for more reliable and effective

distributed machine learning frameworks.

VI. AUTHOR’S CONTRIBUTION

Conceptualization: Gowtham R, Vatsala Anand, Yadati Vijaya

Suresh, Kasetty Lakshmi Narasimha, R. Anil Kumar,

V.Saraswathi

Methodology: Gowtham R, Vatsala Anand, Yadati Vijaya Suresh,

Kasetty Lakshmi Narasimha, R. Anil Kumar, V.Saraswathi.

Investigation: Gowtham R, Vatsala Anand, Yadati Vijaya Suresh,

Kasetty Lakshmi Narasimha, R. Anil Kumar, V.Saraswathi.

Discussion of results: Gowtham R, Vatsala Anand, Yadati Vijaya

Suresh, Kasetty Lakshmi Narasimha, R. Anil Kumar,

V.Saraswathi.

Writing – Original Draft: Gowtham R, Vatsala Anand, Yadati

Vijaya Suresh, Kasetty Lakshmi Narasimha, R. Anil Kumar,

V.Saraswathi.

Writing – Review and Editing: Gowtham R, Vatsala Anand,

Yadati Vijaya Suresh, Kasetty Lakshmi Narasimha, R. Anil

Kumar, V.Saraswathi.

Resources: Gowtham R, Vatsala Anand, Yadati Vijaya Suresh,

Kasetty Lakshmi Narasimha, R. Anil Kumar, V.Saraswathi.

Supervision: Gowtham R, Vatsala Anand, Yadati Vijaya Suresh,

Kasetty Lakshmi Narasimha, R. Anil Kumar, V.Saraswathi.

Approval of the final text: Gowtham R, Vatsala Anand, Yadati

Vijaya Suresh, Kasetty Lakshmi Narasimha, R. Anil Kumar,

V.Saraswathi.

Page 235

ITEGAM-JETIA, Manaus, v.11 n.52, p. 226-136, March./April., 2025.

VII. REFERENCES

[1] M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F.

Hussain, “Machine learning at the network edge: A survey,” ACM Computing

Surveys (CSUR), vol. 54, no. 8, pp. 1–37, 2021.

[2] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang, K. Cheng,

and X. Xiao, “Fault management in software-defined networking: A survey,” IEEE

Communications Surveys & Tutorials, vol. 21, no. 1,pp. 349–392, 2018.

[3] Y. Liu et al., “Optimizations on resource constrained federated learning with

diverse clients,” 2024.

[4] Y. Sun, H. Ochiai, and H. Esaki, “Decentralized deep learning for multi-access

edge computing: A survey on communication efficiency and trust worthiness,”

IEEE Transactions on Artificial Intelligence, vol. 3, no. 6, pp. 963–972, 2021.

[5] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D.

Niyato, and C. Miao, “Federated learning in mobile edge networks: A

comprehensive survey,” IEEE communications surveys & tutorials, vol. 22, no. 3,

pp. 2031–2063, 2020.

[6] F. Akhtar, S. A. Lodhi, S. S. Khan, and F. Sarwar, “Incorporating permaculture

and strategic management for sustainable ecological resource management,”

Journal of environmental management, vol. 179, pp. 31–37, 2016.

[7] Y.-J. Gong, J. Zhang, H. S.-H. Chung, W.-N. Chen, Z.-H. Zhan, Y. Li, and Y.-

H. Shi, “An efficient resource allocation scheme using particle swarm

optimization,” IEEE Transactions on Evolutionary Computation, vol. 16,no. 6, pp.

801–816, 2012.

[8] M. A. Khan, Shalu, Q. N. Naveed, A. Lasisi, S. Kaushik, and S. Kumar, “A

multi-layered assessment system for trustworthiness enhancement and reliability for

industrial wireless sensor networks,” Wireless Personal Communications, vol. 137,

no. 4, pp. 1997–2036, 2024.

[9] Y. Tang, “Transport efficiency increase for axfood’s transport carriers in central

gothenburg,” rapport nr.: Masters Thesis, no. 2003, 2004.

[10] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of trust: A

decentralized blockchain-based authentication system for iot,” Computers &

Security, vol. 78, pp. 126–142, 2018.

[11] Z. Wang, X. Chen, and Z. Zhou, "Joint Resource Allocation and Incentive

Design for Federated Learning in Wireless Networks," IEEE Transactions on

Wireless Communications, vol. 20, no. 3, pp. 2121–2132, Mar. 2021.

[12] J. Zhang, L. Liu, and H. Tang, "Contract-Based Incentive Mechanisms for

Federated Learning," IEEE Transactions on Network Science and Engineering, vol.

7, no. 3, pp. 1227–1240, Jul.–Sep. 2020.

[13] Z. Tang, Y. Zhao, and R. Liu, "Auction-Based Federated Learning Incentive

Mechanisms," IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2598–

2612, Nov. 2020.

[14] L. Li, J. Wang, and X. Zhang, "Efficient Resource Allocation in Heterogeneous

Edge Networks," IEEE Transactions on Cloud Computing, vol. 8, no. 3, pp. 853–

865, Jul.–Sep. 2020.

[15] J. Huang, S. Zhou, and Z. Niu, "Optimized Task Scheduling for Edge

Computing," IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 7,

pp. 1604–1617, Jul. 2018.

[16] X. Chen, L. Pu, and Z. Wang, "Resource Optimization in Federated Learning

Systems," IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp. 781–792,

May 2023.

[17] Y. Liu, S. Guo, and Y. Zhan, "Chiron: Robustness-Aware Incentive

Mechanism for Edge Learning," IEEE Transactions on Mobile Computing, vol. 23,

no. 8, pp. 8508–8518, Aug. 2024.

[18] Z. Tang, Y. Zhao, and R. Liu, "Resource Management for Federated Edge

Learning," IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2271–2284, Mar.

2022.

[19] P. Blanchard, E. M. Lupu, and R. Shen, "Byzantine-Robust Federated

Learning," IEEE Transactions on Neural Networks and Learning Systems, vol. 31,

no. 3, pp. 1012–1024, Mar. 2020.

[20] J. Xie, L. Yang, and Y. Chen, "Reputation-Based Robustness in Federated

Learning," IEEE Transactions on Communications, vol. 69, no. 10, pp. 6712–6721,

Oct. 2021.

[21] J. Kang, R. Yu, and Z. Xie, "Blockchain for Secure and Efficient Edge

Learning," IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1141–

1164, Second Quarter 2020.

[22] C. Fung, C. Zhang, and S. S. Lee, "Robust Federated Learning with Adaptive

Aggregation," IEEE Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 132–

144, Apr. 2021.

[23] A. Vezhnevets, S. Osindero, and T. Schaul, "FeUdal Networks for Hierarchical

Reinforcement Learning," Proceedings of the International Conference on Machine

Learning, 2017, pp. 3540–3549.

[24] Z. Tang, R. Liu, and Y. Zhao, "Task Allocation in Distributed Systems Using

HRL," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no.

9, pp. 5031–5042, Sep. 2021.

[25] X. Chen, L. Pu, and Z. Niu, "HRL for Federated Learning Optimization," IEEE

Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp. 859–871, Apr.

2022.

Page 236

