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The rapid growth of telecommunication systems has increased the need for the secure 

transmission of data images in the telemedicine context, ensuring confidentiality and 

reliability. Chaotic image cryptography, known for its ergodicity and sensitivity to initial 

conditions, is a robust solution against attacks on medical data in unsecured networks. This 

paper introduces a chaotic image encryption scheme utilizing the 2D-logistic sine-coupling 

map (2D-LSCM) to enhance the reliability and security level of medical encrypted images. 

2D-LSCM has been used to generate chaotic matrices for achieving confusion and diffusion 

processes. In the confusion step, a variety of permutation operations are utilized, such as 

improved 2D zigzag transform, magic confusion, pixel confusion, and image rotation. We 

use also a pixel diffusion based on modulo arithmetic. Several simulations were carried out 

to prove the reliability and robustness of the proposed algorithm in protecting medical 

images. Additionally, we evaluate the system's performance and security, comparing it to 

other well-known chaos-based encryption schemes. The results obtained in the simulation 

demonstrated the high security of the cryptosystem, therefore our system can effectively 

secure multiple medical image formats and resist different security attacks. 
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I. INTRODUCTION 

In the digital age, medical images, including X-rays, MRIs, 

CT scans, and ultrasounds, are crucial in diagnosis, treatment 

planning, and patient monitoring [1]. These images contain 

sensitive patient information, and their confidentiality is of 

paramount importance. The rise in cyber threats and unauthorized 

access to medical data has necessitated the development of robust 

encryption techniques to protect these images [2-4]. Traditional 

encryption techniques, such as-Advanced Encryption-Standard 

(AES) [5] and Data encryption-standard (DES) [6] are not suitable 

for encrypting image data and unable to ensure data privacy and 

security [7] due to the images’ dimensions, high redundancy and 

pixel correlation [8],[9].  There have been many approaches for 

encrypting image data over the last two decades, but chaos-based 

encryption has proven to be the most successful [10-15]. 

Chaotic systems are ideal candidates for encryption due to 

their deterministic randomness, meaning they can generate 

unpredictable sequences that are highly sensitive to initial 

conditions. Small changes in the initial state of the system result in 

dramatically different outcomes. This property of chaos [16] is 

used to scramble the image data in such a way that unauthorized 

decryption becomes infeasible without the correct parameters and 

initial conditions. Currently, chaotic systems are widely used for 

encrypting medical images because of their simplicity, efficiency, 

and ability to create high-security encryption [17],[18]. Existing 

chaotic maps are generally classified into two types: one-

dimensional (1D) [19],[20] and high-dimensional (HD) [21],[22] 

maps. 

1D chaotic maps have fewer parameters and variables, 

resulting in a smaller secret key space and lower security [23]. The 

most commonly used 1D chaotic maps in image encryption is the 
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logistic, sine, and tent map [24-25]. In contrast, high-dimensional 

chaotic maps feature more variables and parameters, offer a more 

complex structure, better chaotic performance, and higher 

complexity in the transformation process, which makes it more 

secure compared to 1D chaotic maps. 

However, given their performance and implementation 

costs, 2D chaotic maps are regarded as excellent options for image 

encryption. In order to generate a chaotic matrix using initial values 

and parameters as secret keys, several 2D chaotic maps have been 

recently introduced for image encryption. For example, the 2D sine 

logistic modulation map (2D-SLMM) [26], 2D logistic-adjusted-

sine map (2D-LASM) [27], the two-dimensional Sine infinite 

collapse modulation map (2D-SIMM) [28], 2D logistic-sine-

coupling map (2D-LSCM) [29], Logistic Iterative Chaotic Map 

modulation map (2D-SLIM), and the 2D logistic-modulated-sine-

coupling-logistic map (2D-LSMCL) [30]. 

However, these chaotic maps share a common limitation: 

their chaotic trajectories are narrow, unevenly distributed, and lack 

good ergodicity, making them vulnerable to unauthorized attacks 

and image information theft. While chaotic image encryption 

schemes provide greater security than conventional methods, their 

security depends heavily on the chaotic behavior of the maps used 

and the algorithm's structure. Researchers have shown that if the 

chaotic performance is inadequate or the algorithm's structure is 

not robust, these schemes become vulnerable to security issues and 

attacks. 

Many chaos-based image encryption algorithms have 

drawbacks related to the chaotic systems used and their encryption 

structures. To overcome these limitations, this paper introduces a 

novel chaotic image encryption scheme for medical images, 

designed to enhance chaotic performance and increase the 

randomness of encrypted data, providing protection against various 

statistical attacks and cryptanalysis. This is achieved by utilizing 

the 2D-Logistic Sine-Coupling Map (2D-LSCM) in the algorithm 

to generate chaotic sequences, which are the used in confusion and 

diffusion operations. The 2D-LSCM map is a two-dimensional 

chaos map that offers a wider chaotic range, improved ergodicity, 

and greater unpredictability compared to several existing 2D maps 

[29]. The main contributions of this paper are outlined below. 

• A novel fast chaotic image encryption algorithm that uses 

the 2D-LSCM map to enhance chaotic performance and provide 

greater security for the encrypted medical image. 

• The proposed 2D-LSCM medical image encryption 

algorithm based on improved 2D zigzag confusion and two-level 

of magic confusion and pixel diffusion. 

• Security analysis tests such as key sensitivity analysis, 

differential analysis, Shannon's entropy, local Shannon's entropy 

and contrast tests are conducted to validate the proposed scheme's 

resistance to various attacks.  

• The Experimental results of these tests are compared with 

other prominent chaotic encryption schemes to highlight the 

improvements achieved by the proposed scheme. 

The remainder of the paper is structured as follows: In Section 2, 

we present a review of existing research on medical image 

encryption algorithms based on chaotic systems. The 2D-LSCM 

and its chaotic performance evolution are presented in Section 3. 

Section 4 develops a new medical image encryption scheme based 

on 2D-LSCM. The simulation results and security performance of 

our scheme and its comparisons with several other image 

encryption algorithms are presented in Section 5. Section 6 

provides the conclusion of this paper. 

 

II. RELATED WORKS 

Medical image encryption is a critical area of research, 

given the sensitive nature of medical data and the increasing 

reliance on digital imaging in healthcare. Chaotic maps are widely 

used for encryption due to their inherent properties of sensitivity to 

initial conditions, randomness, and low computational overhead. 

Currently, various technologies have been implemented in the field 

of medical image encryption. Below is an overview of the current 

state of the art with references from recent works.  

In [31] developed a novel chaos-based medical image 

encryption scheme using a sine-cosine chaotic map. Their method 

involves generating a pseudorandom key and constructing a cipher 

image through a three-phase process. Its proposed chaotic map 

exhibited a wider chaotic range and more complex behavior 

compared to existing maps, enhancing encryption robustness.  

In [32] introduced a medical image encryption scheme-

based on Josephus traversing and a hyperchaotic Lorenz system. 

The algorithm employs a hyperchaotic sequence in both 

scrambling and diffusion stages, utilizing Josephus and Arnold 

maps for confusion. Experimental results indicated effective hiding 

of plaintext image information and resistance to common attack 

types. Another medical image encryption algorithm that utilizes a 

variable dimensional chaotic map was proposed by in 2023 [33]. 

Their method features full and semi-full encryption modes, 

utilizing a confusion-diffusion structure with image integrity 

verification to balance security and time efficiency. 

For [34] proposed a medical image encryption scheme-

based on an improved cosine fractional chaotic map combined with 

DNA operations. The scheme involves generating intermediate 

keys and chaotic sequences, followed by DNA encoding and 

diffusion. Security performances such as NPCR, UACI, and 

information entropy indicated the scheme's robustness. 

In the same context, [35] presented an encryption method 

that integrates wavelet transform with multiple chaotic maps. 

Utilizing Lorenz and logistic maps for chaotic key generation, the 

scheme demonstrated high security, low time complexity, and 

resistance against crop attacks. According to [36] developed a 

medical image encryption algorithm based on a new five-

dimensional multi-band multi-wing chaotic system and QR 

decomposition. The method utilizes QR decomposition and chaotic 

sequences for encryption, demonstrating a large key space, strong 

key sensitivity, and effective resistance to statistical analysis 

attacks.  

According to. [37] developed a fast image encryption 

system-based on chaotic cryptography. Their approach utilized a 

hybrid chaotic magic transform (HCMT) to generate the encrypted 

image from a secret key. By employing the HCMT, which 

combines the Lanczos algorithm with the chaotic magic transform 

(CMT), they achieved a correlation coefficient of 0.0012. This 

result surpassed the performance of the CMT method by [26], 

which had a correlation coefficient of 0.042. In [38] present a novel 

chaotic encryption scheme for medical images that combines 

Arnold’s Cat Map with 2D-LSCM, offering improved security 

level and time complexity over other existing methods. 
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Figure 1:Trajectories of three 2D chaotic maps: (a) the 2D Logistic map with 𝒓 = 𝟏. 𝟏𝟗;  

(b) the 2D-LSCM  with  = 1;  (c) the 2D-LSCM with  = 0.99. 

Source: Authors, (2025). 

 

III. CHAOTIC MAPS 

III.1 LOGISTIC MAP 

The Logistic map is a simple yet well-known chaotic system 

[39], described by the iterative equation (1) 

 

𝑥𝑖+1 = 𝑟(1 − 𝑥𝑖)                                   (1) 
 
where 𝑥𝑖 is the state variable at the 𝑖-th iteration, 

while 𝑥𝑖 ∈ [0,1], and 𝑟 ∈ [1,4] is a parameter that controls the 

dynamic system.  

 

III.2 LOGISTIC MAP 

The Sine map is another 1D chaotic map defined as [40]: 

  

𝑥𝑖+1 = 𝛼𝑠𝑖𝑛(𝜋𝑥𝑖)                                    (2) 

 

where 𝑥𝑖 ∈ [0,1] is the state variable at the 𝑖-th iteration, 

and 𝛼 ∈ [0,1] is a parameter that controls the dynamic map. 

  

III.3 SINE MAP 

The two-dimensional logistic-sine-coupling map (2D-

LSCM) represents a significant advancement in chaotic systems, 

especially in the context of image encryption [29]. This discrete 

chaotic map is created by combining features from both the 

Logistic map and the Sine map, which enhances its chaotic 

proprieties and randomness.  

The traditional one-dimensional Logistic and Sine maps 

have certain limitations, including simplistic dynamics and low 

chaotic ranges, which can negatively impact some chaos-based 

applications [26]. However, by combining the Logistic and Sine 

maps, a new chaotic map with significantly more complex behavior 

and large chaotic range, known as the 2D-LSCM, can be created. 

This map is defined as [29]. 

 

{
𝑥𝑖+1 = 𝑠𝑖𝑛 (𝜋(4𝜃𝑥𝑖(1 − 𝑥𝑖) + (1 − 𝜃)𝑠𝑖𝑛(𝜋𝑦𝑖)))    

𝑦𝑖+1 = 𝑠𝑖𝑛 (𝜋(4𝜃𝑦𝑖(1 − 𝑦𝑖) + (1 − 𝜃)𝑠𝑖𝑛(𝜋𝑥𝑖+1)))
    (3) 

 

Where the control parameter 𝜃 is within the range of [0,1]. 
Its definition makes clear that this combination allows to 

extend the dimension from 1D to 2D. As a result, this approach 

allows for the effective integration of the complexities of the 

Logistic and Sine maps, resulting in highly intricate chaotic 

behavior. 

Figure 1 illustrates the trajectories of the 2D-logistic map 

(2D-LM) [41], 2D-sine logistic modulation map (2D-SLMM) [26], 

and the 2D-LSCM. To generate the trajectories of this three 2D 

maps, the initial conditions were set as (0.8, 0.5) and the control 

parameters are chosen as the settings that enable the corresponding 

chaotic maps to achieve their optimal chaotic performance. In 

particular, the control parameters for the 2D Logistic map, 2D-

SLMM, and 2D-LSCM are set to 1.19, 1, and 0.99, respectively. 

As shown in the figure, the phase space covered by the 2D-LSCM 

trajectory is significantly larger compared to the Logistic map and 

2D-LSCM. This demonstrates that the randomness exhibited by the 

2D-LSCM map is high, making them suitable for secure 

cryptographic applications. 

 

IV. 2D-LSCM-BASED MEDICAL IMAGE ENCRYPTION 

ALGORITHM  

In this section, we design the 2D-LSCM-based medical 

image encryption algorithm using 2D-LSCM, and its structure is 

illustrated in Figure 2. First, the plaintext image 𝑃 is the original 

image and the cipher image 𝐶 is the encrypted image. The secret 

key is used to generate initial values and control parameters for 2D-

LSCM map. In the proposed scheme, we used a 2D-LSCM map to 

generate the chaotic matrices for confusion and diffusion 

operations. The confusion and diffusion operations are used to 

randomly shuffle pixel positions, and change pixel values of the 

plaintext image, respectively. 

Zigzag confusion and magic confusion are used to achieve 

the confusion property by randomly shuffling all pixel positions. 

The image rotation operation involves rotating the image clockwise 

by 90° for a high-efficiency scrambling. The pixel diffusion 

operation is used to achieve the diffusion property by randomly 

changing all pixel values. To obtain random-like encryption results 

while avoiding the cases that 2D-LSCM may lose its chaotic 

behaviors in some parameter settings the proposed image 

encryption algorithm uses two steps of magic confusion and pixel 

diffusion operations. The decryption process simply reverses the 

encryption operations of image encryption algorithm, as shown in 

Figure 2. The proposed algorithm for medical image encryption is 

detailed as follows: 

Page 207



 
 
 

 

ITEGAM-JETIA, Manaus, v.11 n.52, p. 205-219, March./April., 2025. 

 

 

 

 
Figure 2: Block diagram of the proposed image encryption Method. 

Source: Authors, (2025). 

 

Algorithm 1: The proposed medical image encryption scheme  

Input: The secret key 𝐾 = (𝑥0, 𝑦0, 𝜃, 𝐻, 𝐺1, 𝐺2) and the original 

image 𝑃 with dimensions 𝑀 × 𝑁.  

 

1- Transform the binary sequences 𝑥0, 𝑦0, 𝛼, 𝐻 into decimal 

numbers, and 𝐺1, 𝐺2 into integers ;  

2- Obtain two groups of initial conditions (𝑥0
1, 𝑦0

1, 𝜃1)and 
(𝑥0

2, 𝑦0
2, 𝜃2);  

3- Generate two chaotic matrices 𝑆1 and 𝑆2 with the same size of 𝑃 

using 2D-LSCM with two groups of initial conditions in Step 2;  

4- Apply zigzag confusion to the plaintext image 𝑃; 

5- Apply magic confusion using the chaotic matrix 𝑆1; 

6- Apply pixel diffusion using the chaotic matrix 𝑆1;  

7- Image rotation; 

8- Apply magic confusion using the chaotic matrix 𝑆2; 

9- Apply pixel diffusion using the chaotic matrix 𝑆2;  

Output: The encrypted image 𝐶 

 

IV.1 INITIAL CONDITION GENERATION 

The secret key 𝐾 a binary sequence with a length of 256 bits 

which is used to generate the chaotic matrix. Its structure is shown 

in Figure 3. It contains information of initial values and control 

parameters of 2D-LSCM and can be divided into 6 parts: 

𝑥0, 𝑦0, 𝜃, 𝐻, 𝐺1 and 𝐺2 are initial values and 𝜃 is control parameter. 

𝐻, 𝐺1 and 𝐺2 are designed to change the initial values and 

parameters to enlarge the security key space. 𝑥0 , 𝑦0, 𝛼, and 𝐻 are 

decimal numbers which are generated by a 52-bit string 

{𝑏0, 𝑏1, … . . , 𝑏52} using the IEEE 754 format [41],[42], as shown in 

Equation 4.  

𝑥 =
1

252
∑ 𝑏𝑖

52

𝑖=1

252−𝑖                                                  (4) 

 

𝐺1 and 𝐺2 are two integer coefficients generated by a 24-

bit string {𝑏0, 𝑏1, … . . , 𝑏24}.  

 

 
Figure 3: The security key structure. 

Source: Authors, (2025). 

The equation 5 defines the initial values and control 

parameters of 2D-LSCM chaotic map for generating two chaotic 

matrices, which can be effectively employed in our algorithms to 

perform confusion and diffusion operations. 

 

    {

𝑥0
(𝑖)

= (𝑥0 + 𝐺𝑖𝐻) mod 1 

𝑦0
(𝑖)

= (𝑦0 + 𝐺𝑖𝐻) mod 1 

𝜃𝑖  = (𝜃 + 𝐺𝑖𝐻) mod 0.1

                             (5) 

 

Where the phase number 𝑖 is equal to 1 or 2. In Equation 5, 

the two generated initial values will fall into the range of [0, 1], and 

the control parameter 𝜃 will be limited within [0, 1]. As a result, 

we can use the initial value (𝑥0
𝑖 , 𝑦0

𝑖 , and 𝜃𝑖) to generate a 

sufficiently long chaotic matrices, whose length equals the size of 

the original image 𝑃 using the Equation 3. 

In such a way, we make encryption key 𝐾 to generate two 

initial states and control the two pseudo-random matrices produced 

from the 2D-LSCM for pixel confusion, magic confusion, and pixel 

diffusion in each phase. Therefore, the 2D-LSCM demonstrates 

strong chaotic performance with these settings. In our medical 

image encryption algorithm, users can either manually choose a 

256-bit binary sequence or randomly generate a binary stream to 

create the security key. In our simulations and comparisons, we 

generate random 256-bit binary streams as the security keys, which 

are provided along with the encrypted results for image decryption. 

In our medical image encryption algorithm, the users have 

the flexibility of manually selecting a binary sequence with 256 bits 

or randomly generating a binary stream to produce the security key. 

In our simulations and comparisons, we randomly generate binary 

streams with a length of 256 bits as the security keys that will be 

returned along with the encrypted results for image decryption. 

 

IV.2 IMPROVED 2D ZIGZAG CONFUSION   

The 2D zigzag scan [43] was generally employed to 

scramble the pixel positions of medical images. This operation can 

effectively disrupt the high correlation between adjacent pixels. 

The process began with the first pixel of the medical image matrix, 

and subsequent pixels were traversed in a 2D zigzag pattern [44]. 

This traversal transformed the two-dimensional matrix into a one-

dimensional sequence, as illustrated in Figure 4. 

In this section, we present a new scrambling algorithm 

inspired by the zigzag transform. The concept of the improved 2D 
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zigzag confusion is detailed in algorithm 3, with a numerical 

example provided in Figure. 4. The detailed zigzag confusion 

procedure is as follows:  

For the pixel located in the 𝑖-th row and 𝑗-th column of the 

original image, its value is represented by 𝑃(𝑖, 𝑗). The 

corresponding index for this pixel is calculated as (𝑀 − 𝑗) × 𝑁 +
𝑖, denoted as 𝐼(𝑖, 𝑗). The typical zigzag transformation technique 

involves starting from one corner of the matrix array 𝐼(𝑖, 𝑗), moving 

along the diagonal to its end, scanning all elements parallel to the 

diagonal to form a one-dimensional vector, and then reconstructing 

the vector based on predetermined rules.  
 

Algorithm 3: Improved 2D zigzag confusion  

Input: the original image 𝑃 with dimensions 𝑀 × 𝑁. 

1- Apply zigzag transform to the plaintext image 𝑃, obtain two-

dimensional array 𝐼 and corresponding one-dimensional index 

array 𝐼𝑉 ; 

2- Reshape the matrix 𝑃 into a vector array  𝑃𝑉; 

3- for 𝑖 = 1 to 𝑀 × 𝑁 𝑑𝑜 

4-       𝑃1𝑉 = 𝑃𝑉(𝐼𝑉(𝑖)); 
5- end for 

6- Reshape the vector 𝑃1𝑉 into a matrix array  𝑃2 

Output: Zigzag confusion result 𝑃2. 

 

 
Figure 4: A numerical example of the improved 2D zigzag 

confusion. 

Source: Authors, (2025). 
 

IV.3 MAGIC CONFUSION  

Digital images typically exhibit high information 

redundancy due to the strong correlations between neighboring 

pixels. To disrupt these correlations, this section proposes 

employing a magic confusion method based on a chaotic matrix to 

randomly alter the positions of image pixels. 

The shuffling procedure using magic confusion based 

chaotic magic confusion can be detailed as follows [26]:  

• Step 1: the original image 𝑃 and chaotic matrix 𝑆 with the 

same size of 𝑀 × 𝑁, which is generated using the 2D-LSCM with 

the initial state; 

• Step 2: Sort each column of 𝑆 in ascending order to obtain 

the sorted matrix Ś and its corresponding index matrix 𝑂. The 

generation of the index matrix 𝑂 from a chaotic matrix 𝑆 is then 

defined as follows 

•  

𝑂(𝑖, 𝑗) = 𝑘          𝑓𝑜𝑟   𝑆́(𝑖, 𝑗) = 𝑆(𝑖, 𝑗)                          (6) 

     where 𝑖, 𝑗, and 𝑘 are integers, 1 ≤  𝑖, 𝑘 ≤  𝑀 and 1 ≤
 𝑗 ≤  𝑁  

• Step 3: Set row index 𝑖 = 1;  

• Step 4: Connect the pixels in 𝑃 with positions 

{(𝑃𝑖,1, 1), (𝑃𝑖,2, 2), (𝑃𝑖,3, 3), … , (𝑃𝑖,𝑁, 𝑁)} using the locations 

{(𝑂𝑖,1, 1), (𝑂𝑖,2, 2), (𝐼𝑖,3, 3), … , (𝐼𝑖,𝑁, 𝑁)} into a circle;  
 

• Step 5:  Shift these pixels 𝑖 positions to the left;  

• Step 6: Iterate Step 3 to Step 6 up to 𝑖 = 𝑀, we can obtain 

the magic confusion result 𝑇. 

To clarify the process of magic confusion using 2D-LSCM, 

an illustrative numerical example with an image size of 4 × 4 is 

provided, as illustrated in Figure 5. 

The magic confusion procedure have the ability to modify 

the pixel positions in the original image 𝑃 based on the chaotic 

matrices 𝑆1 et 𝑆2 produced by 2D-LSCM. It randomly links pixels 

from different rows and columns into circular groups and then 

shifts their positions within these circles. 

 

IV.4 IMAGE ROTATION 

As mentioned in the previous section, the scrambling 

process only rearranges the 𝐿2 × 𝐿2 portion of the image, leaving 

the remaining pixels with strong correlations between them. To 

ensure that all the pixels in the image are shuffled during 

encryption, image rotation is introduced as another operation of 

scrambling. This is achieved by rotating the image by 90° in the 

anticlockwise direction. The rotation angle of the image does not 

significantly affect the final encryption parameter values, so the 

image can be rotated by any random angle. The primary purpose of 

rotation is to displace the image pixels from their original positions. 

In the decryption step, the scrambled image is rotated clockwise to 

reverse these changes and restore the pixels to their original 

positions. Therefore, this operation not only shifts the pixel 

positions but also changes their spatial arrangement, making it 

more difficult to reverse-engineer the image. 

 

 
Figure 5: An example of the pixel shuffling processes using 

magic confusion. 

Source: Authors, (2025). 

 

IV.5 PIXEL DIFFUSION 

An encryption algorithm with good diffusion properties can 

effectively resist chosen plaintext attacks. Diffusion property 

ensures that even a minor difference between two plaintexts, when 

encrypted with the same key, produces completely different cipher 

images. This process spreads small changes in the plain image 

across all pixels in the cipher image. It involves altering the current 

pixel based on the previous pixel and a randomly generated value. 

To perform the diffusion operation, Let the scrambling result 

matrix 𝑇 and the generated chaotic matrix S both have dimensions 

of 𝑀 × 𝑁.  Then, the pixel diffusion result is defined by the 

mathematical eq. (7) [45].
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Figure 6: Examples of medical images used to test the proposed algorithm. 

Source: Authors, (2025). 

 

𝐶𝑖,𝑗 = {

(𝑇𝑖,𝑗 + 𝑇𝑀,𝑁 + 𝑆𝑖,𝑗)   mod F,        if  𝑖 = 1, 𝑗 = 1          

(𝑇𝑖,𝑗 + 𝑇𝑀,𝑗−1 + 𝑆𝑖,𝑗) mod F,        if  𝑖 = 1, 𝑗 = 1 ~ 𝑁  

(𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗 + 𝑆𝑖,𝑗)  mod F,        if  𝑖 = 1 ~ 𝑀            

(7) 

 

where 𝐹 denotes the number of intensity levels, e.g. 𝐹 =
256 if a pixel is represented by 8 bits. 𝑆 is a chaotic matrix 

generated by 2D-LSCM with the initial state (𝑥0
𝑖  𝑦0

𝑖 , 𝜃𝑖 ) (𝑖 = 1 in 

the first phase and 𝑖 = 2 in the second phase). It has the same size 

and its elements are represented as the same data format as the 

pixels in 𝑇. In the decryption process, the inverse operation of Eq. 

(7) is defined as 

 

𝑇𝑖,𝑗 = {

(𝐶𝑖,𝑗 − 𝑇𝑀,𝑁 − 𝑆𝑖,𝑗)   mod F,     if  𝑖 = 1, 𝑗 = 1          

(𝐶𝑖,𝑗 − 𝐶𝑀,𝑗−1 − 𝑆𝑖,𝑗) mod F,    if  𝑖 = 1, 𝑗 = 1 ~ 𝑁 

(𝐶𝑖,𝑗 − 𝐶𝑖−1,𝑗 − 𝑆𝑖,𝑗)  mod F,     if  𝑖 = 1 ~ 𝑀            

 (8) 

 

V. SIMULATION RESULTS AND SECURITY ANALYSIS  

This section simulates the proposed medical image 

encryption algorithm based on 2D-LSCM map and evaluates its 

performance under the MATLAB implementation. A variety of 

medical images, including MRI, X-ray, CT, and ultrasound images, 

successfully encrypted using our algorithm. The majority of test 

medical images used in our experiments are chosen from the Open 

Access Open-I images dataset (https://openi.nlm.nih.gov). For 

simplicity, we use twelve images, displayed in Figure 6, as 

examples for our experiments and security analysis. In Figure 6, 

the images in (1)-(4) have dimensions of 256 × 256, the images in 

(5)-(8) have dimensions of 512 × 512, but the size of the last four 

images is 1024 × 1024.  

 

V.1 COMPUTATION TIME ANALYSIS 

In this section, we assess the encryption and decryption 

times of the developed image encryption algorithm and compare 

its execution times with those of four recent schemes. All the 

algorithms, including the developed one, are implemented in the 

MATLAB environment (R2021b), and the experiments are 

conducted on a computer with an Intel i5-7300U CPU @ 2.60GHz, 

8 GB of RAM, and the Windows 10 operating system. Table 1 

presents a comparison of the encryption and decryption times of 

various image encryption algorithms for different image sizes. The 

simulation results indicate that our proposed algorithm 

outperforms the others in terms of total computation time. 

Furthermore, our encryption algorithm not only offers better 

security but also executes faster than the other advanced image 

encryption schemes. 
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Table 1: Comparison of encryption and decryption times for 

different encryption algorithms. 

Test 

image 

Size of the 

image 

Computation Time (second) 

Ref. 

[26] 

Ref. 

[23] 

Ref. 

[29] 

Ref. 

[38] 
Our  

Image 

3 
256 × 256 

2.12 4.21 1.75 1.38 1.66 

Image 

5 
512 × 512 

3.97 13.73 2.71 2.30 2.23 

Image 

9 
1024×1024 

8.24 102.64 4.76 5.91 4.35 

Source: Authors, (2025). 

 

V.2 SECURITY KEY ANALYSIS 

Evaluating performance metrics is essential for assessing 

the effectiveness and security of medical image encryption 

techniques. Various key indicators are typically used to evaluate 

these algorithms, such as the key space and key sensitivity. 

However, the users are flexible to choose any other settings by 

considering the tradeoff between the security level and 

computation cost. 

 

V.2.1 SECURITY KEY SPACE  

One of the typical fundamental elements used to evaluate 

encryption algorithms is key space, which refers to the total number 

of possible keys that can be generated for an encryption algorithm. 

A substantial key space is crucial for protection against brute-force 

attacks, making it a cornerstone of effective encryption systems. 

Generally, a key space exceeding 2100 is required to ensure 

sufficient defense against such threats [46]. In theory, a larger key 

space enhances the algorithm's security. The proposed medical 

image encryption algorithm uses a security key of 256 bits, 

resulting in a key space of 2256. This key space is large enough to 

withstand brute-force attacks, given the computational power of 

current computers. 

 

V.2.2 KEY SENSITIVITY ANALYSIS 

Another important metric that is used to evaluate encryption 

algorithms is key sensitivity, which measures how responsive the 

encryption algorithm is to changes in initial conditions or keys. In 

chaotic systems, even minor variations can lead to dramatically 

different results, ensuring that each encrypted image remains 

unique and secure. This characteristic helps to undermine potential 

attacks that rely on predictability. However, the secret key should 

exhibit sensitivity during both the encryption and decryption 

processes. This means that a single-bit difference between two 

secret keys will lead to completely different cipher-images during 

encryption and result in totally different decrypted images during 

the decryption process. 

Figures 7 display the key sensitivity analysis for the 

encryption and decryption processes, respectively. K2 and K3 are 

two secret keys derived from K1 with one bit difference. As shown 

in Figure 7, when the plain-image is encrypted using K2, and K3, 

the resulting cipher-images are completely different as shown in 

Figure 7(b) and 7(c). Figure 7(e) illustrates that the cipher-image 

can only be fully reconstructed with the correct secret key, and 

even a small difference in the secret keys produces entirely 

different decrypted images, as seen in Figure 7(f) and 7(g). 

Therefore, our medical image encryption algorithm is highly 

sensitive to changes in its secret key in both the encryption and 

decryption processes. 
 

V.3 STATISTICAL ANALYSIS 

In this section, we evaluate the resistance of our medical 

image encryption scheme to statistical attacks by examining four 

aspects: histogram, correlation, information entropy, and local 

Shannon entropy. This section presents several experiments to 

demonstrate the reliability of our proposed algorithm. 

 

V.3.1 HISTOGRAM ANALYSIS 

Histogram analysis is used to evaluate how effectively the 

algorithm randomizes pixel values within encrypted images. An 

ideal histogram should display a uniform distribution across pixel 

intensity values, indicating successful scrambling of the image data 

while preventing any leakage of information about the original 

content. The histograms of the original images and their 

corresponding encrypted images are shown in Figure 8. The results 

clearly indicate that the encrypted images exhibit a much more 

uniform distribution compared to the original images, indicating a 

high resistance to statistical attacks. 

 

V.3.2 INFORMATION ENTROPY ANALYSIS 

The randomness of the pixels in the encrypted image is a 

crucial factor in ensuring the security of the encryption scheme. 

This randomness can be effectively measured using Local Shannon 

Entropy [47], calculated using the formula provided in Eq. (9). 
 

𝐻(𝑥) = − ∑ 𝑃𝑟(𝑥𝑖 )

2𝑛−1

𝑖=0

𝑙𝑜𝑔2𝑃𝑟(𝑥𝑖 )                                   (9) 

 

Here, 𝑃𝑟(𝑥𝑖 ) is the probability of a specific symbol 𝑥, and 

𝑛 denotes the number of bits in a pixel. 

For an encrypted image to be secure against attacks, its pixel 

distribution must be completely uniform. When the pixel 

distribution of an 𝑛-bit image is fully uniform, the entropy of the 

image equals 𝑛. In this study, as we are working with 8-bit images, 

the objective is to achieve entropy values close to 8, ensuring a 

uniform pixel distribution and maximizing security [47].  

Table 2. shows the information entropy values of twelve 

medical images with different sizes encrypted by several image 

encryption algorithms. As shown in Table 4, our encryption 

scheme achieves a mean entropy value of 7.998884, which is closer 

to 8 compared to other schemes used in comparison, indicating 

superior performance. These result indicates that the proposed 

scheme can encrypt images into cipher-images with good 

randomness. 

 

V.3.3 LOCAL SHANNON ENTROPY 

Global Shannon entropy, discussed in the previous 

subsection as information entropy, has certain limitations such as 

inaccuracy, inconsistency, and low efficiency [47]. To address 

these issues, the local Shannon entropy (LSE) has been introduced, 

which can provide a precise characterization of the randomness in 

image pixels. For a data image 𝐼, we divide the image 𝐼 into 𝑘 non-

overlapping sub-image blocks 𝑆1, 𝑆2, … , 𝑆𝑘 , each sub-image block 

containing 𝑇𝐵 pixels. Then, the LSE is defined as:  

 

𝐻𝑘,𝑇𝐵
(𝐼) = − ∑

𝐻(𝑆𝑖)

𝑘

𝑘

𝑖=0

                                                                          (10) 

Here 𝐻(𝑆𝑖) represents the Shannon entropy of image block 

𝑆𝑖. 
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Figure 7: Key sensitivity analysis. (a) Plaintext image 𝑷; (b) ciphertext image 𝑪𝟏, (c) ciphertext image 𝑪𝟐; (d) difference of ciphertext 

images: |𝑪𝟏 − 𝑪𝟐|; (e) decrypted image 𝑫𝟏, (f) decrypted image 𝑫𝟐, (g) decrypted image 𝑫𝟑 and (h) difference of decrypted images: 

|𝑫𝟐 − 𝑫𝟑|. 
Source: Authors, (2025). 

 

In our experiment, we certain medical images from the 

OPEN-I image dataset for simulation to validate the robustness of 

our scheme. To enable comparisons with other encryption 

algorithms and following the recommendation in [47], we set the 

parameters 𝑘 = 30, and 𝑇𝐵 = 1936 with a significance level of 

𝛼 = 0.05 [48-50]. Under these settings, the ideal LSE value is 

7.902469317, and LSE test is considered successful if the score for 

a ciphered image falls between 7.901901305 and 7.903037329 

[47].  

Table 3 presents the LSE results, showing that the pass rate 

of our algorithm is 12/12, which is notably higher compared to 8/12 

[26], 7/12 [23], and 8/12 [29], and 10/12 [38]. Additionally, the 

average LSE value for ciphered images generated by our algorithm 

is 7.902467, with a standard deviation of 0.000349. These results 

indicate that the average LSE value from our proposed scheme is 

very close to the theoretical value of 7.902469317, with the 

smallest standard deviation among the compared methods. 

Therefore, our scheme demonstrates superior security. This means 

that the encrypted images by our scheme have better random 

distributions. This suggests increased unpredictability in pixel 

values, enhancing security against statistical attacks. 
 

V.3.4 PIXEL CORRELATION ANALYSIS 

Correlation reflects the linear relationship between two 

random variables and is used to measure the relationship between 

adjacent pixels in image processing. In plain-images, the pixels 

tend to have a high correlation with their neighboring pixels in all 

direction. Therefore, it is important to ensure that the correlation 

between adjacent pixels is low enough to prevent recognition in 

horizontal, vertical, or diagonal directions. Therefore, the image 

encryption algorithm aims at breaking these pixel correlations in 

the original images and transforming them into noise-like 

encrypted images with little or no correlations. Generally, having a 

correlation coefficient close to 0 is one of the important 

performance indicators of an excellent encryption scheme. The 

values of the correlation coefficient can be calculated by  

𝐶𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

√𝐷(𝑥) × √𝐷(𝑦)
                                      (11) 

where 

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝐸(𝑥))(𝑦𝑖 − 𝐸(𝑦))

𝑁

𝑖=0

             (12) 

and 

𝐷(𝑥) =
1

𝑁
∑(𝑥𝑖 − 𝐸(𝑥))

2
𝑁

𝑖=0

   ,      𝐸(𝑥) =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=0

         (13) 

 

where 𝑥𝑖 and 𝑦𝑖  present the adjacent pixels, 𝐷(. ) is variance 

of corresponding pixels, 𝐸[. ] is the expectation value. If two 

sequences 𝑥 and 𝑦 have high correlations, their correlation value is 

close to 1. Otherwise, it is close to 0. 

In our test, we randomly select 2000 pairs of neighbor pixels 

from original and encrypted images and we analyses correlation 

from adjacent pixels along with the horizontal, vertical and 

diagonal directions. Figure 9 plots the distributions of the pixel 

sequence pairs, X and Y of the original image and its encrypted 

version generated by the proposed algorithm. As shown in Figure 

9, the horizontal axis represents the concentration of randomly 

selected pixels, while the vertical axis shows the intensity of their 

corresponding neighboring pixels. In the original image, the 

neighboring pixel pairs are distributed or near the diagonal line, 

indicating that the pixels are similar or nearly identical, reflecting 

a strong correlation between adjacent pixels. In contrast, the 

neighboring pixel pairs of the encrypted image are distributed 

randomly across the entire data range, demonstrating an extremely 

low correlation in the encrypted image. 

Table 5 compares correlations of the original images with 

its encrypted versions generated by the proposed medical image 

encryption algorithm. The results of the original image are close to 

1 while the ciphertext image’s results are close to 0. These further 

verify that the encrypted image by the medical image encryption 

algorithm has an extremely low correlation. The results indicate 

that this can effectively eliminate the correlation between 

neighboring pixels in an input image. 
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Figure 8: Simulation result of histogram analysis of some images. (a) The original images; (b) the histogram of (a);  

(c) the encrypted images; (d) the histogram of (c); (e) the decrypted images; (f) the histogram of (e). 

Source: Authors, (2025). 
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 (a)                                            (b)                                         (c)                                          (d) 

Figure 9: Distributions of adjacent pixel sequence pairs of (a) the plain-image and its cipher-image along  

with the (b) horizontal, (c) vertical, and (d) diagonal directions, respectively. 

Source: Authors, (2025). 

 

Table 2: Comparison of information entropy values for various encrypted images. 

Test image 
Size of the 

image 

Original 

image 

Encrypted image 

Ref. [26] Ref. [23] Ref. [29] Ref. [38] Our algorithm 

Image 1 

256 × 256 

6.018538 7.997298 7.997468 7.997207 7.997504 7.997500 

Image 2 6.670125 7.997163 7.997241 7.997547 7.997385 7.997445 

Image 3 6.864571 7.997214 7.997274 7.997055 7.997355 7.997390 

Image 4 4.867913 7.997508 7.997061 7.997466 7.997128 7.997567 

Image 5 

512 × 512 

5.529474 7.999429 7.999382 7.999297 7.999220 7.999316 

Image 6 7.249175 7.999301 7.999299 7.999320 7.999284 7.999372 

Image 7 6.033099 7.999357 7.999328 7.999305 7.999392 7.999304 

Image 8 4.467764 7.999296 7.999407 7.999296 7.999300 7.999325 

Image 9 

1024 × 1024 

4.613337 7.999819 7.999796 7.999843 7.999821 7.999849 

Image 10 4.046626 7.999826 7.999820 7.999806 7.999846 7.999854 

Image 11 7.677182 7.999846 7.999824 7.999815 7.999841 7.999849 

Image 12 6.342696 7.999819 7.999815 7.999858 7.999817 7.999845 

Mean  5.86504167 7.998823 7.9988091 7.9988179 7.9988244 7.9988846 

Std  1.17006255 0.0011497 0.0011639 0.001136 0.001121 0.001064 

Source: Authors, (2025). 

 

Table 3: The LSE scores of cipher-images encrypted by different image encryption schemes. 

Test image Size of the 

image 

LSE values of encrypted images 

Ref. [26] Ref. [23] Ref. [29] Ref. [39] Our algorithm 

Image 1 

256 × 256 

7.902104 7.903087 7.902114 7.902997 7.902732 

Image 2 7.902343 7.900276 7.901377 7.902443 7.902637 

Image 3 7.901306 7.900218 7.902113 7.902936 7.902304 

Image 4 7.904267 7.900625 7.902801 7.901417 7.901921 

Image 5 

512 × 512 

7.902099 7.902357 7.905825 7.899788 7.902898 

Image 6 7.902596 7.901037 7.901908 7.902434 7.902831 

Image 7 7.902716 7.902308 7.905475 7.901833 7.902070 

Image 8 7.899989 7.901197 7.902024 7.902961 7.902322 

Image 9 

1024 × 

1024 

7.903846 7.901467 7.900868 7.902690 7.902111 

Image 10 7.902185 7.902204 7.901187 7.902942 7.902432 

Image 11 7.901439 7.903602 7.902529 7.903084 7.902351 

Image 12 7.902638 7.902749 7.903081 7.902112 7.902998 

Mean  7.902294 7.901760 7.902608 7.902303 7.902467 

Std  0.0011199 0.0011192 0.001558 0.000948 0.0003495 

Pass/All  8/12 7/12 8/12 10/12 12/12 

Source: Authors, (2025). 
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Table 4: Correlation coefficients for various encrypted images. 

Test image 
Size of the 

image 

Original image Encrypted image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Image 1 

256 × 256 

0.979429 0.978050 0.961882 -0.022281 0.015536 0.035114 

Image 2 0.980633 0.974735 0.957295 0.000035 0.007166 -0.037567 

Image 3 0.885755 0.953481 0.853835 -0.003321 0.004171 -0.003195 

Image 4 0.971358 0.966191 0.934692 -0.000554 0.000274 0.005378 

Image 5 

512 × 512 

0.986619 0.985892 0.973654 -0.009633 0.001169 -0.001427 

Image 6 0.987208 0.986487 0.974914 -0.009005 0.009597 0.007787 

Image 7 0.987514 0.984080 0.970312 0.004144 0.021803 -0.001043 

Image 8 0.968627 0.948725 0.940331 0.005555 0.004621 0.007703 

Image 9 

1024 × 1024 

0.992121 0.993768 0.983130 -0.024726 0.028376 -0.009513 

Image 10 0.992848 0.996047 0.989666 0.040142 -0.012564 0.013787 

Image 11 0.998847 0.999121 0.998515 -0.001969 0.004487 -0.001418 

Image 12 0.995155 0.998722 0.994371 -0.006361 0.009663 0.004471 

Mean  0.97717617 0.98044158 0.9610498 -0.002331 0.0078583 0.0016731 

Source: Authors, (2025). 

 

Table 5: Comparison of correlation values of encrypted images for various algorithms. 

Test 

image 

Size of the 

image 
Direction 

Encrypted image 

Ref. [26] Ref. [23] Ref. [29] Ref. [38] Our algorithm 

Image 3 256 × 256 

Horizontal -0.005232 -0.021848 0.025001 -0.038534 0.000035 

Vertical 0.003435 -0.002923 -0.028009 0.005827 0.007494 

Diagonal -0.030729 0.014174 -0.001203 0.003749 -0.003195 

Image 5 512 × 512 

Horizontal -0.000637 0.028980 0.006032 -0.004001 -0.009661 

Vertical 0.011822 -0.015811 0.004157 -0.013116 -0.045108 

Diagonal -0.016458 0.013305 0.012856 0.033941 -0.008454 

Image 9 1024 × 1024 

Horizontal 0.020733 0.027330 0.021507 -0.003379 0.000213 

Vertical 0.009093 0.006693 -0.024616 0.009539 -0.000159 

Diagonal -0.031264 0.017534 -0.009884 0.036621 -0.009210 

Mean   -0.00436 0.0074927 0.000649 0.0034052 0.000276 

Source: Authors, (2025). 

 

V.4 RESISTANCE TO DIFFERENTIAL ATTACK 

The differential attacks analyze how variations in plaintexts 

influence the corresponding ciphertexts. For an image encryption 

algorithm, its resistance to such attacks can be evaluated 

quantitatively using the Number of Pixel Change Rate (NPCR) and 

the Unified Average Change Intensity (UACI) metrics. NPCR 

quantifies the number of differing pixels between two images, 

while UACI measures the intensity of pixel value differences 

between the two images. Let 𝐶1 and 𝐶2 represent two cipher-images 

encrypted from plain-images that differ by only one bit. The NPCR 

and UACI are defined as follows: 

 

NPCR =
1

𝑀 × 𝑁
 ∑  

𝑀

𝑖=0

∑ 𝐷(𝑖, 𝑗) × 100(%)                (14)

𝑁

𝑗=0

 

 

and 

UACI =
1

𝑀 × 𝑁
 ∑  

𝑀

𝑖=1

∑  

𝑁

𝑗=1

𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)

2𝑙 − 1
× 100(%)        (15) 

 

Here, 𝑀 and 𝑁 denote the width and height of the image, 

respectively, while 𝑙 represents the number of binary bits per pixel. 

𝐷 represents the difference between 𝐶1 and 𝐶2 , defined as 

 

𝐷(𝑖, 𝑗) = {
0,      if    𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗) 

1,      if    𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)
                  (17) 

 

The theoretical values of NPCR and UACI is recorded as 

99.6094% and 33.4635%, respectively [51].  

The NPCR and UACI test results of various medical images 

for different encryption algorithms are shown in Table 6. It can see 

from the Table 6 that our scheme achieves high performance by 

having NPCR values no less than 99.5810 % and UACI values no 

less than 33.461%. Moreover, we can see that our medical image 

encryption scheme achieves excellent NPCR and UACI results 

with a mean score of 99.6085% for NPCR and 33.5665% for 

UACI, which are close to ideal values. Thus, we can conclude that 

the proposed scheme is well resistant to differential attacks. 

 

V.5 ROBUSTNESS TO RESIST DATA LOSS AND NOISE 

ATTACKS 

When a digital image is transmitted through networks or 

stored in the physical media, it is easily contaminated by noise or 

may have the data loss. An image encryption algorithm should have 

the robustness to resist noise and the data loss. In the proposed 

algorithm, the encryption and decryption processes are 

asymmetric. In the encryption process, one pixel change in the 

plaintext image will spread over all pixels in the ciphertext image. 

However, in the decryption procedure, the change of one pixel in 

the ciphertext image can affect only a few pixels in the recovered 

result. Thus, the proposed medical image algorithm can decrypt the 

ciphertext image with noise or data loss.  

In the first experiment, we simulate a scenario where 

medical images are illegally intercepted during transmission and 

subjected to varying degrees of data loss. Specifically, we examine 

four cases where 1/16, 1/8, 1/4, and 1/2 of the encrypted medical 

image 5 are obscured. Figure 10(a) illustrates the encrypted 

medical images and its corresponding decrypted images, while 

Figures 10(b)-(d) the encrypted images with 1/16 loss, 1/8 loss, 1/4 

loss, and the corresponding restored images using the correct keys. 
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It is evident that even with minor data loss, useful information 

about the original image cannot be reconstructed from the 

decrypted output. This indicates that even if the correct key is 

compromised and an intruder intercepts most of the encrypted data, 

the details of the original image remain unrecoverable. 

In the second experiment, it is assumed a scenario where 

images are subjected to varying kinds of noises during 

transmission. Salt-and-pepper noise with a value of density equal 

0.01, Gaussian, and speckle noises with a value of variance equal 

0.01 are added to the encrypted medical image no 5. The noisy 

encrypted images are then decrypted, and the resulting outputs are 

displayed in Figures 11. It is observed that for encrypted images 

affected by noise, the decrypted output remains unrecognizable, 

even when the correct decryption key is used. 

 

 

 

Table 6: The NPCR and UACI results of various images for different encryption algorithms. 

Test image 
Ref. [26] Ref. [23] Ref. [29] Ref. [38] Proposed algorithm 

NPCR UACI NPCR UACI NPCR NPCR NPCR UACI NPCR UACI 

Image 1 99.6749 33.6001 99.5971 33.5059 99.6093 99.6093 99.5907 33.2772 99.6093 33.4908 

Image 2 99.6139 33.5385 99.6475 33.4780 99.6078 99.6078 99.6134 33.5133 99.6078 33.4949 

Image 3 99.6215 33.6963 99.6109 33.5487 99.6368 99.6368 99.6310 33.8715 99.6109 33.4151 

Image 4 99.5788 33.5234 99.6475 33.3194 99.6139 99.6139 99.5884 33.6033 99.6032 33.4612 

Image 5 99.5006 32.4290 99.6101 33.4249 99.6147 99.6147 99.6190 33.4522 99.6147 33.4802 

Image 6 99.6181 33.5518 99.6150 33.4572 99.6177 99.6177 99.6252 33.4834 99.6177 33.4744 

Image 7 99.6089 33.4472 99.6208 33.4043 99.6143 99.6143 99.5950 33.5015 99.6017 33.4655 

Image 8 99.3354 31.6879 99.5895 33.4856 99.6231 99.6231 99.6081 33.5255 99.6059 33.5032 

Image 9 99.6091 33.5007 99.6216 33.4638 99.6109 99.6109 99.5800 33.4434 99.6093 33.4654 

Image 10 99.6100 33.4661 99.6106 33.4939 99.6061 99.6061 99.6108 33.4589 99.6057 33.4757 

Image 11 99.5988 33.4693 99.6031 33.4310 99.6090 99.6090 99.6045 33.4361 99.6090 33.4676 

Image 12 99.6081 33.4562 99.6169 33.4510 99.6210 99.6210 99.5180 33.3290 99.5810 33.4838 

Mean 99.5815 33.2805 99.6158 33.4553 99.6150 33.5086 99.5986 33.4912 99.6063 33.4731 

Std 0.08694 0.59641 0.01746 0.05790 0.01293 0.06059 0.02967 0.14740 0.00914 0.02240 

Source: Authors, (2025). 

 

Table 7: Comparison of PSNR values for various schemes under 

different noise conditions 

Schemes Variance 

PSNR [dB] 

Gaussian 

noise 

Salt and 

pepper 

noise 

Speckle 

noise 

Ref. [26] 

0.001 

29.5764 54.1853 30.7218 

Ref. [29] 29.2577 29.0399 28.6587 

Our scheme 31.4438 54.1853 29.0134 

Ref. [26] 

0.005 

29.2858 40.3832 31.8049 

Ref. [29] 29.0933 29.2161 29.0665 

Our scheme 31.6086 48.1647 30.9632 

Source: Authors, (2025). 
 

Table 7 presents a comparison of PSNR values for different 

image encryption schemes under different noise conditions when 

the grayscale medical image 4 of size 512 x 512 is used as a test 

image. Despite the image after encryption being affected by 

various kinds of noise with a variance value equal to 0.001, the 

decrypted images manage to retain much of the original image 

information. Experimental results validate the efficacy of the 

encryption algorithm, demonstrating its resilience against various 

kinds of attacks while providing robust encryption. This indicates 

that our proposed scheme is effective against noise attacks. 

Therefore, our method not only demonstrates strong resistance to 

data loss and noise attacks but also exhibits robust performance 

overall. 

 

VI. CONCLUSIONS 

Telemedicine facilitates remote monitoring, diagnosis, and 

first-aid administration, offering cost-effective healthcare 

solutions, but the transmission of high-resolution medical images 

through public networks raises concerns about data security. 

Traditional encryption methods like DES and AES are insufficient 

for digital image encryption, leading to the development of chaos-

based encryption schemes as a promising alternative to secure 

image transmission and storage. This paper utilizes the 2D-LSCM 

chaotic map, derived from Sine and Logistic maps, to generate 

security keys for encryption and decryption. The 2D-LSCM is 

chosen for its wider chaotic range, better ergodicity, hyperchaotic 

properties, and superior chaotic performance compared to existing 

maps. To demonstrate the performance of 2D-LSCM in medical 

data security applications, a new fast medical image encryption 

algorithm is designed. This algorithm is essentially based on 

improved 2D zigzag confusion, magic confusion, and pixel 

diffusion. The confusion operations can rapidly shuffle adjacent 

pixels in an image in both the row and column directions, and the 

latter can achieve the diffusion property by spreading a few original 

image changes over the entire encrypted image. Simulation results 

confirm that our scheme efficiently encrypts various medical 

images into unrecognizable encrypted images with high security 

and low run time, outperforming some advanced encryption 

algorithms. Given its high efficiency and security level, future 

research will explore its application in other media data such as 

video encryption. 
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Figure 10: Robustness results to loss data attack. (a) The encrypted original image and its decrypted image;  

(b)-(d) the encrypted images with 1/16 loss, 1/8 loss, 1/4 loss, and the corresponding restored images. 

Source: Authors, (2025). 

 
Figure 11: Robustness results to noise attack. (a) The encrypted original image and its decrypted image; (b)-(d) the encrypted 

images with 1% salt and pepper, 1% Gaussian noise, 1% speckle noise, and the corresponding restored images. 

Source: Authors, (2025). 
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