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Rolling bearings functionality has a primary importance for the correct operation of the 

rotating machines. In this paper, a monitoring technique based on deconvolution approach 

is proposed to restore the impulsive shape from the measured vibration signal. This latter 
is obtained from a convolution of real impulse signal and transmission function. The 

proposed procedure consists of two major steps; firstly, using the minimum entropy 

deconvolution (MED) to obtain the inverse filter, secondly introducing the iterative 

deconvolution algorithm to go back to the initial problem that is mathematically described 

by the convolution process to restitute the impulsive signal. The proposed procedure is 

applied to bearing diagnosis, and its effectiveness is validated by simulated and 

experimental data acquired from operational bearings. Moreover, the monitoring obtained 

results are satisfactory. 
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I. INTRODUCTION 

Due to the complexity of mechanical system, multiple 

faults may co-exist in rotating machinery, especially in one of 
their most important component rolling element bearings. 

Therefore, the requirement for fault diagnosis has grown and 

proves that it is extremely essential task in process monitoring; it 

provides operators with the process operation information. Early 

diagnosis of process faults like rolling bearing faults can help to 

avoid abnormal event progression, and to reduce productivity loss 

in order to ensure the safe running of machines. Several 

monitoring methods for this purpose have been developed, 

including dynamics, tribology, nondestructive methods and 

vibration [1-3].  

The vibration signal analysis has been widely used over 
the past decade, as it provides valuable information about the 

health condition of mechanical equipment. Vibration signals from 

rolling bearings are particularly important for fault diagnosis due 

to their critical role as mechanical components. However, these 

signals often contain significant noise because of their sensitivity 

to various faults. In the presence of background noise, the useful 

information can be obscured. Therefore, to extract the effective 

information, various feasible and effective techniques need to be 

applied. Numerous researches for this goal are available in the 

literature. 

From a mathematical perspective, the bearing vibration 

signal is viewed as the result of a convolution process involving 

periodic impacts caused by faults and the response of mechanical 

components. This work builds on this concept, aiming to restore 

the original impulsive signal from the measured one. There has 

been a considerable amount of research into the creation of 

different restoration techniques during the last decades. Among 
the many proposals found in the scientific literature, there are: 

wavelet transform [4],[5], Variational Mode Decomposition 

(VMD) [6],[7], Empirical Mode Decomposition (EMD) [8],[9], 

Blind Separation Sources (BSS) [10],[11] and the Minimum 

Entropy deconvolution) (MED) [12- 15] etc. 

MED has been shown to be a successful deconvolution 

method, it was proposed by Wiggins [16] to enhance the 

excitation component in the fault vibration signal. This technique 

is based on the maximization of the kurtosis by finding an inverse 
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filter while considering that the initial excitation was impulsive. 

After that, Endo and Randall [17] applied MED to detect faults in 

rotating machines diagnosis, more precisely in gears. Then, [18], 

[19] adopted this technique to enhance the detection of bearings 

faults. In [20] combined a monostable stochastic resonance with 

minimum entropy deconvolution based on time-delay feedback 

for fault diagnosis of rolling bearings. In [21] suggested rolling 

bearing condition monitoring technique based on the envelope 

spectrum and MED. Recently, many researchers such as: [22-25], 

… etc. employed different deconvolution methods as an 
important step in an effective strategy in order to restitute the 

informative impulse. Unfortunately, unless the development of 

those different researches, the results are limited. 

As mentioned previously, the vibration signal of rolling 

bearings is often contaminated by significant noise due to their 

sensitivity to various faults, leading to many difficulties in 

extracting useful information. Although different studies have 

been conducted to isolate the impulse signal and eliminate 

unwanted sources. Unfortunately, the results remain insufficient 

to overcome these difficulties. For this purpose, we propose a 

novel strategy in this paper, combining MED with iterative 
algorithms to restore the impulsive components present in the 

bearing signal. 

Firstly, an investigation by applying the deconvolution 

techniques and adopting the MED method to optimize the finite 

impulse response (FIR) filter that eliminates the effect of the 

transmission path through inverse filtration to get a signal closer 

to the original impulse, this useful information corresponds to the 

convolution process of the generated impulses and the 

transmission path of the mechanical component. Although the 

MED filter has been estimated as a first step, this latest leads a 

solution of an appropriate ill-posed problem and it requires the 

result to be regularized, hence this typically referred to operates it 
in combination with other signal processing techniques in order to 

overcome these limitations. For this reason, we present in the 

second step of this procedure, an estimation of the original 

impulses by applying iterative algorithms regularized by 

Tikhonov-Miller (TM) based on integrated a priori model of 

solution. 

The rest of this paper is structured as follows: section 2 

describes in detail the proposed method. Section 3 contains the 

theoretical background of MED, iterative algorithm and TM 

Regularization. In section 4, verification of the suggested 

procedure's efficacy utilising simulated bearing signal and the 
experimental data collected from bearing test rig. Section 5 

discussed the obtained results. Finally, the conclusions are drawn 

in Section 6. 

 

II. THEORETICAL BACKGROUND: 

II.1 MINIMUM ENTROPY DECONVOLUTION (MED) 

Deconvolution is defined as the opposite process of 
convolution. In fact, the measured signal may be seen as result of 
a convolution operation of the original signal and the transmission 

path. Figure (1) illustrates the convolution/deconvolution process 

in which the signals g(k) and x(k) represent respectively the 

original impulse and the measured output, h(k) represents the 

effect of the transmission path, f(k) is the finite impulse response 

(FIR) filter, n(k) represents the noise and * denotes the 

convolution. 

 

 
Figure 1: Convolution/deconvolution basic process. 

Source: Authors, (2025). 

 

As mentioned previously different deconvolution 
techniques are employed to restore the original impulses. In this 

work we present the MED method, which has been recently 

introduced to the machine monitoring domain. Wiggins [16] was 

the first to suggest it in the area of blind convolution, and it was 

effectively used in seismic treatment. 

The fundamental idea of applying the MED technique is to 

construct an inverse filter in order to eliminate the effect of the 

transmission path from the measured signal. Thus, the filtered 

output signal yk produced by the input signal (measured signal) xk 

(k=1, 2… N) and the building inverse filter  f =[f1, f2,…, fL] with L 

coefficients, as follows: 
 

  𝑦(𝑘) = 𝑓(𝑘) ∗ 𝑥(𝑘) = ∑ 𝑓(𝑖)𝑥(𝑘 − 𝑖)

𝐿

𝑖=1

+ 𝑛𝑘                (1) 

Such that: 

 

𝑥(𝑘) = 𝑔(𝑘) ∗ ℎ(𝑘) + 𝑛𝑘                             (2) 

 

The figure (2) illustrates the basically process of MED, 

this process is implemented for calculating the optimal set of filter 

coefficients by maximizing the kurtosis of y(k).] 

 

 
Figure 2: MED process. 

Source: Authors, (2025). 

 

Hence, the kurtosis of an output signal y is given by: 

 

𝑘 =
𝐸(𝑦4)

(𝐸(𝑦2))2
− 3                                   (3) 

 

 𝑦 = 𝑓𝑥 + 𝑏                                      (4) 
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Unfortunately, the challenge of reconstructing x from 

equation (4) leads to an ill-posed problem; in other words, the 

solution x of equation (4) may not be unique, may not exist, or 

may not depend continuously on the data. It is clear that these 

limitations must be overcome by introducing stability criteria; 

more precisely regularizing this ill-posed problem, and through 

adopting a deconvolution algorithm. 

 

II.2 ITERATIVE ALGORITHM AND TIKHONOV-

MILLER REGULARIZATION 

II.2.1 VAN CITTERT ALGORITHM 

Iterative algorithms are used to inspect the solution more 

precisely than when calculating in a single operation, in other 

words they generally have the advantage of not imposing the 

direct calculation of inverse operators. 

Van Cittert algorithm [26] serves as a foundational tool for 

many iterative deconvolution methods. This approach is a fixed-
point [27], its iterative formula is given by:  

 

{
𝑥𝑛+1 = 𝑥𝑛 + (𝑦 − 𝑓𝑥𝑛)
𝑥0 = 𝑦                                

                            (5) 

 

The vector 𝑥𝑛 represents an intermediate solution that lies 

between the initial estimate 𝑥0 and the final solution 𝑥∞. It can be 

demonstrated that the Van Cittert algorithm converges to a 

solution 𝑥∞ that is equivalent to that derived from direct inversion 

(Equation  6).  

 

𝑥∞⟶  𝑓−1𝑦                                            (6) 
 

This property underlines the effectiveness of the algorithm 

in reconstructing signals. But unfortunately the Van Cittert 

algorithm does not consider the presence of noise in the measured 

signal. This leads from a mathematical point of view to an 

unstable solution if the problem is ill-posed. Therefore, it is 

essential to incorporate an effective regularization in order to 

achieve a reliable solution. 

 

II.2.2 TIKHONOV-MILLER REGULARIZATION 

When the problem is poorly conditioned, it can lead to an 

unstable solution. Therefore, it is necessary to use a regularization 

method to obtain a desirable solution. Different regularization 

methods have been proposed and discussed [28-30]. 

Tikhonov regularization is regarded as one of the most 

widely used methods for addressing ill-posed problems and 
solving inverse problems. It is accomplished by choosing a 

solution that does not only reconstructs a signal close to the 

measured one but also aligns with prior knowledge of the original 

signal [31-34]. From mathematical perspective, this method 

consists of redefining the concepts of inversion and solution such 

that the regularized solution depends continuously on the data and 

remains close to the exact solution. In other words, it reduces the 

sensitivity of the solution to errors in the data. 

This regularization method is based on a quadratic 

criterion (least squares between the measured data and the 

reconstructed signal), so this quadratic quantity is required to be 

lower than the noise energy‖𝑦 − 𝑓𝑥‖2 ≤ ‖𝑏‖2. According this 

method, the stabilization of the estimated solution is achieved 
generally by differentiating a functional to be minimized: 

 

∆= ‖𝑦 − 𝑓𝑥‖2 + 𝛼‖𝐷𝑥‖2                           (7) 

Where 𝛼 > 0 and D is a stabilizing operator; D measures 

the degree of regularity of the solution such that‖𝐷𝑥‖2 ≤ 𝑟2. It is 

chosen according to the treatment context and some previous 

information about the original signal. D is typically used to 

smooth the estimated signal, followed by the selection of a 

gradient or discrete Laplacian. Its spectrum functions as a high-

pass filter, for more details, refer to [32],[35] and [36]. The 

minimization of D proposed by Tikhonov is given as follow: 

 

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛(‖𝑦 − 𝑓𝑥‖2 + 𝛼(‖𝐷𝑥‖2 − 𝑟2))                (8) 

 

Such that, argmin represents the argument that minimizes 

the expression between brackets, and 𝛼 is the regularization 

parameter. This latest controls the trade-off between data-fidelity 

and regularization term. It is a challenging task to find the 

regularization parameter 𝛼 that provides the best balance between 

signal smoothing and feature preservation, see [28],[37]. The 

previous minimization problem can be solved by the system 

below: 
(𝑓𝑇𝑓 + 𝛼𝐷𝑇𝐷)𝑥 = 𝑓𝑇𝑦                           (9) 

 

The regularized solution has the following form: 

 

𝑥 = (𝑓𝑇𝑓 + 𝛼𝐷𝑇𝐷)−1𝑓𝑇𝑦                           (10) 

 

Where  

𝑓+ = 𝑥 = 𝑓𝑇𝑓 + 𝛼𝐷𝑇𝐷                           (11) 

 

The generalized matrix 𝑓+ is more conditioned that is why 

it replaces the matrix H, which described the deconvolution 

process before regularization. The system becomes more stable by 

the modification of the eigenvalues of H. 

The regularization operator D selection should not present 

any issues as long as the eigenvalue modification criterion is 

followed, and the regularization value α must be chosen optimally 

in order to achieve reconstruction quality. In fact, the matrix H is 

not as well-conditioned when this parameter is estimated poorly, 

thus, the solution is degenerated. By replacing the iterative 

resolution of 𝑦 = 𝑓𝑦 by that of 

 

𝑓𝑇𝑦 = (𝑓𝑇𝑓 + 𝛼𝐷𝑇𝐷)𝑥                           (12) 

 

The Van Cittert algorithm with Tikhonov-Miller 

regularization is written as follows: 

 

{
𝑥𝑛+1 = 𝑥𝑛 + [𝑓𝑇𝑦 − (𝑓𝑇𝑓 + 𝛼𝐷𝑇𝐷)𝑥𝑛]

𝑥0 = 𝑓𝑇𝑦                               
               (13) 

 

III. THE PROPOSED PROCEDURE 

This paper proposes a novel deconvolution procedure in 

order to effectively restore the original periodic impulses from 

faulty bearing vibration signals. The bearing vibration signal 

acquired from an accelerometer sensor is considered as measured 

signal, this later is a convolution between periodical impulses 

signal and a transmission path. 

A suitable combination between MED and iterative 

algorithm based on a priori model of solution is adopted as a 

deconvolution procedure to extract the original signal from the 

measured signal.  

In the first step, MED is employed to determine a 

deconvolution filter by maximizing the kurtosis of the output. 
This involves finding the optimal inverse filter to counteract the 
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effects of the transmission path. The filter coefficients can be 

computed using a second-order iterative Kurtosis algorithm based 

on the Hessian matrix. With the known source, the coefficients of 

the mixing matrix 𝑓 can be estimated. The filter coefficients fm,n(l) 

are estimated using the following formula: 

 

𝑓𝑘,𝑙(𝑙) =
𝐸(𝑥(𝑘)𝑦(𝑘 − 𝑙))

𝐸(𝑦(𝑘)2)
 ,   𝑘 = 1,2, … . , 𝑁,

𝑙    = 1,2, … . , 𝑀                                                        (14) 
 

Unfortunately, the obtained inverse filter cannot directly 

reflect the convolution relationship between source features and 

the transmission path. In other words, restoring the original 

impulses using the resulting inverse filter involves solving an ill-

posed problem, where noise prevents the solution from being 

unique or stable. Therefore, in the second step, we propose to 

solve this ill-posed problem by introducing the Van Cittert 

algorithm, based on Tikhonov-Miller regularization, using an a 

priori model of the solution. The detailed strategy of this method 

is summarized in Figure 3. 

 

 
Figure 3: The flowchart of the proposed strategy. 

Source: Authors, (2025). 

 

IV. NUMERICAL SIMULATION AND EXPERIMENTAL 

VALIDATION 

IV.1 NUMERICAL SIMULATION 

In this part, a numerical simulation is presented to evaluate 

the effectiveness of the proposed procedure. This investigation 

demonstrates the importance of the two steps in the proposed 

strategy. We have chosen a model that simulates the impulse 

response derived from a pulse train. The model modulates each 

pulse with two harmonic frequencies, with exponential decay 

occurring. Hence, the impulse response could serve to model the 
modulated signal of a bearing system, and is presented as follows:  

 

x(t) =  𝑒−𝜀𝜏(sin(2ᴨ𝑓1t) +  3 × sin(2ᴨ𝑓2t))         (15) 

 

With 

𝜏 = 𝑚𝑜𝑑 (𝑡,
1

𝑓𝑑

)                                 (16) 

 

Where𝜀, 𝑓1, 𝑓2 , and 𝑓𝑑  represent, respectively, the frequencies of 

decay, resonance, and defect (modulation).  
 

 
Figure 4: a) Simulated signal without noise, b) Signal with 

noise and c) Filtered signal. 

Source: Authors, (2025). 

 

 
(a) 

 
(b) 

Figure 5: a) Final Filter, Finite Impulse Response, b) Kurtosis 

maximization during MED Algorithm iteration. 

Source: Authors, (2025). 

 

The simulated vibration signal obtained from Equation 15 

is displayed in Figure 4a with Gaussian noise and in Figure 4b 

without it. A comparison of Figures 4a and 4b shows that the 

0 0.05 0.1 0.15 0.2 0.25 0.3
-4
-2
0
2
4

time (s)

A
m

p
lit

u
d
e

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3

-2
0
2
4

(b)

time (s)

A
m

p
lit

u
d
e

0 0.05 0.1 0.15 0.2 0.25 0.3

-2

0

2

(c)

time (s)

A
m

p
lit

u
d
e

0 20 40 60 80 100 120 140
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Sample Number

V
al

ue

Final Filter, Finite Impulse Response

0 2 4 6 8 10 12
3

4

5

6

7

8

9

10

MED Algorithm Iteration

Su
m

 o
f K

ur
to

sis
 fo

r F
ilte

re
d 

Si
gn

al(
s)

Page 168



 
 
 

 

ITEGAM-JETIA, Manaus, v.11 n.52, p. 165-172, March./April., 2025. 

 

 

periodic impulses in Figure 4b are not clearly visible in the time 

domain. It is important to note that the main advantage of the 

proposed procedure is its ability to detect periodic effects, 

enabling the extraction of useful information. The inverse filter 

constructed using the MED technique is shown in Figure 5a, 

while the kurtosis maximization during MED Algorithm iteration 

is illustrated in Figure 5b. After applying the Van Cittert 

algorithm as a second step, the filtered signal is obtained by 

maximizing kurtosis to extract the impulsive signal from bearing 

vibration. 
Figure 4c illustrates the resulting signal from the proposed 

procedure. The impulsive shape of the signal is more clearly 

visible, with a kurtosis value of 3.96 compared to the input 

signal's value of 3.67, indicating effective noise reduction while 

preserving key impulsive features. Although the improvement in 

the kurtosis value is slight, it is clearly visible in Figure 2, 

reflecting the enhancement in the clarity of the impulsive features 

after processing. 

 

IV.2 EXPERIMENTAL VALIDATION 

Vibration measurement used for defect diagnosis and 

condition monitoring imposes various kinds and degrees of 

equipment and methods selected according to the available 

resources, skills and knowledge. 

In this study, we present the experimental measurements 
utilized entirely from the vibration data acquired at the Case 

Western Reserve University Bearing Data Center [38]. As 

illustrated in Figure 6, the vibration data were obtained using 

accelerometers mounted on the housing with magnetic bases. The 

measurement unit is mm/s² (gravity). 

 

 
Figure 6: Bearing test rig. 

1- Fan end bearing, 2-induction motor, 3-Drive end bearing, 

4-Torque transduce, 5-Load Motor 

Source: Authors, (2025). 

 
The vibration signals were obtained from four various 

bearing conditions: (1) Bearing without fault i.e. Normal state 

(NS); (2) Bearing with Outer Race Fault (OrF); (3) Bearing with 

Ball Fault (BF) and (4) Bearing with Inner Race Fault (IrF). The 

vibration signals were sampled at a rate of 12000 Hz.  

Deep groove ball bearings were used in the experiments, 

with the following specifications: ball diameter = 7.94 mm; pitch 

diameter = 39.04 mm; number of balls = 9; and contact angle = 0. 

The electro-discharge machining (EDM) technique created faults 

in the test bearings, using varying diameters: 0.1778 mm, 0.28 

mm and 0.5334 mm. The bearings were tested at four rotational 

speeds (ranging from 1797 to 1730 rpm) and under four different 

loads (ranging from 0 to 4 horsepower (hp)) using a 

dynamometer. 

In this study, the motor speeds considered are 1797 rpm 

and 1750 rpm, corresponding to 0 hp and 2 hp, respectively. The 

defect sizes in both the inner and outer races are recorded at 

0.1778 mm and 0.5334 mm. Since there are many samples in 

every signal, choosing sample numbers that spans a sufficient 

amount of full rotations is necessary to reduce computing 

time. For the two rotation speeds considered in this study, 
selecting 4096 samples provides approximately 12 full rotations 

that is enough for analysis. While preserving the essential system 

information. 

Vibration signals collected from defective bearings, with 

IrF, BF and OrF, at speeds of 1797 and 1750 rpm, are plotted in 

Figure 8. From these plots, Impulse responses are not directly 

identifiable, aside from OrF cases, in which they are noticed 

along with background noise. Overall, the signals obtained from 

the experiments are contaminated by noise, which introduces 

various frequency components and can lead to inaccurate 

conclusions during interpretation. 
The proposed procedure processes the measured signals to 

extract periodic impulses, thereby revealing the fault information. 

Because there were so many findings, we have chosen to display 

just a few. The filtered signals are displayed in Figures. 9b, 10b, 

and 11b. Compared with the input (measured) signal, it is clear 

that the bearing impulses show periodically over time to evaluate 

the quality of the signals produced by the proposed procedure, 

Table (1) presents the calculated kurtosis values. The optimal 

filter size, determined as 64, was selected based on kurtosis 

maximization, as illustrated in Fig. 7 this analysis was performed 

using the vibration signal of a bearing with IrF of diameter 0.5334 

mm. 
 

 
Figure 7: Effect of filter size on Kurtosis maximization. 

Source: Authors, (2025). 

 

The results demonstrate that the extracted signal, which 

exclusively represents the rolling bearing fault characteristics, is 

accurately reconstructed. 

 
Table 1: Comparison of Input and Filtered Signals for Bearing 

Faults with different Fault Sizes. 
Bearing faults IrF OrF BF 

Fault size 0.5334 mm 0.1778 mm 

Input signal 6.8718 4.4488 2.6767 

Filtered signal 98.1651 5.5134 102.9748 

Source: Authors, (2025). 
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The results in the table confirm a significant difference 

between the input signal and the resulting one for the two 

rotational speeds examined (1797 and 1750 rpm), suggesting that 

the extracted signals include more defect-related information. The 

chosen characteristics are then rebuilt for every rotation speed 

(Figure 9 , 10 and 11), especially in Figure 9 and 11, which show 

the bearing signals with an IrF and BF measured at different 

rotational speeds of 1797 rpm and 1750 rpm. In these figures, 

periodic impulses are seen in the time domain. These impulses 

occur when the balls make contact with the defect, clearly 
showing peaks associated with the fault.  

The combined approach shows better results regarding 

residual noise removal and fault identification effectiveness. The 

achieve outcomes demonstrate that the suggested method might 

be successfully utilized to extract utility characteristics from 

bearing vibration signals, as evidenced by a comparison with 

previous studies. However, accurately identifying fault features in 

both the time and frequency domains remains challenging due to 

interference from rotating components. To address this issue, the 

suggested procedure first constructs the inverse filter using the 

MED technique, followed by the application of the Van Cittert 
algorithm to recover the most relevant features that contain the 

key fault information. 

The results indicate that our strategy successfully identifies 

the fault characteristic frequencies of damaged bearings, 

outperforming methods from previous research, such as those 

cited in [10], [37], [39-41]. While these studies applied different 

methods to extract useful information directly from the measured 

signal through filtering, our approach introduces a crucial step 

before filtration: the extraction of the inverse filter. The results 

presented here validate the effectiveness of this additional step in 

improving fault detection and feature extraction. 

 

 
Figure 8: Vibration signals in time domain of bearing with:  

a) IrF, b) BF and c) OrF.  
Source: Authors, (2025). 

 
Figure 9: Bearing with IrF of diameter 0.5334 mm: 

a) Measured signal, b) filtered signal. 

Source: Authors, (2025). 

 

 
Figure 10: Bearing with BF of diameter of 0.1778 mm:  

a) Measured signal, b) filtered signal. 

Source: Authors, (2025). 

 

 
Figure 11: Bearing with OrF of diameter 0.5334 mm:  

a) Measured signal, b) filtered signal. 
Source: Authors, (2025). 

 

V. CONCLUSIONS 

This work presents an effective method for diagnosing 

bearing faults by reconstructing a signal that closely approximates 

the original one. First, the measured signal was processed using 

the Maximum Entropy Deconvolution (MED) technique to design 

an optimal inverse filter, effectively offsetting the influence of the 

transmission path. The restoration of the original impulses 

through this inverse filter corresponds to solving an inherently ill-

posed problem. 
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To address this challenge, the Van Cittert algorithm was 

employed as a second step, working in tandem with MED to 

iteratively refine the reconstructed signal. This combination 

ensures a stable solution by suppressing noise while retaining 

crucial diagnostic information embedded in the fault-induced 

impulses. The iterative nature of the Van Cittert algorithm enables 

the process to progressively approximate the original signal, 

achieving a balance between noise reductions and preserving the 

true signal characteristics. 

The proposed approach has proven effective in enhancing 
the visibility of fault-related impulse components, even in the 

presence of significant noise. This methodology highlights the 

significance of integrating advanced deconvolution techniques 

with regularization algorithms for reliable signal restoration in 

fault diagnosis, offering a competitive alternative to existing 

methods in the field. 
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