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     This paper introduces a reactive navigation strategy for wheeled mobile robots, utilizing 

type-2 fuzzy logic to manage uncertainty in dynamic environments. The approach 

incorporates two distinct type-2 fuzzy logic controllers, each tailored to address specific 

challenges in navigation. The first controller focuses on steering the robot toward its target 

by continuously adjusting its path in response to changing conditions. The second controller 

specializes in obstacle avoidance, enabling the robot to detect and maneuver around 

obstacles it encounters during its journey.  

     To evaluate the performance of the system, numerical simulations are carried out across 

various scenarios, including dynamic and cluttered environments, to demonstrate its 

robustness. Additionally, the results of the type-2 fuzzy logic approach are compared with 

conventional navigation techniques, such as rule-based or model-based methods. The 

comparison underscores the system’s greater adaptability and resilience. The study 

concludes that type-2 fuzzy logic provides an effective and flexible solution, significantly 

improving both path planning and real-time decision-making in unpredictable and complex 

environments. 
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I. INTRODUCTION 
The field of mobile robot navigation has gained increasing 

importance in recent years due to the rising use of robots in various 

fields, including industrial and service applications [1]. The control 

of motion for mobile robots involves several research areas, such 

as path planning and tracking algorithms [2], precise control design 

for trajectory following (3], and obstacle avoidance [4], [5]. The 

demand for robots to navigate in unknown and dynamic 

environments, filled with both static and dynamic obstacles, has 

driven the development of advanced systems for planning and 

navigation. Current path planning methods can be broadly 

categorized into two main types: global planning methods and local 

or reactive planning methods [6], [7]. 

Global path planning, also known as off-line or static path 

planning, refers to the process where the robot has prior knowledge 

of the environment and can reach its destination via a pre-defined 

path. This category includes various algorithms, such as graph-

based methods like Dijkstra’s algorithm, roadmap-based methods 

such as RRT and PRM, and topological methods including cell 

decomposition and Voronoi diagrams [8]. 

In contrast to global path planning algorithms, which rely 

on prior knowledge and environmental mapping, reactive or local 

navigation strategies employ sensors to monitor the robot's 

surroundings in real-time, allowing the robot to make quick 

decisions without prior knowledge of the environment. These 

reactive strategies often involve various algorithms such as 

Artificial Potential Fields (APF) [9], Control Barrier Functions 

(CBF) ([10]), and Fuzzy Logic Controllers (FLC) [11]. 

Fuzzy Logic Control (FLC) has become a key element in 

reactive navigation strategies due to its ability to make decisions in 

real-time based on sensory data. FLC has proven particularly useful 

for handling nonlinearities and managing dynamic, uncertain 

environments. Several researchers have proposed using FLC 

systems for mobile robot navigation. For example, [12], [13] 

proposed fuzzy control systems for guiding robots to their target 

destinations while avoiding obstacles. Furthermore, [14] developed 
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an optimal fuzzy tracking control system based on the Takagi-

Sugeno model and Linear Quadratic Regulator (LQR) for 

improving trajectory tracking and obstacle avoidance. 

However, traditional fuzzy logic systems face difficulties 

in precisely defining membership values within the [0, 1] range for 

fuzzy systems. To address this issue, Type-2 Fuzzy Logic Systems 

(T2FLS) have been explored as a more effective solution [15].  

These systems help in dealing with higher levels of 

uncertainty, making them ideal for dynamic environments where 

information may be incomplete or fuzzy. Similarly, researchers 

such as ([11]) have employed Particle Swarm Optimization (PSO) 

to enhance fuzzy membership functions, while others have applied 

neuro-fuzzy systems in sensor-based navigation [16], [17]. 

Additionally, Zadeh's concept of Type-2 fuzzy logic, introduced in 

1975 [18], has played a significant role in enhancing robot 

adaptability to unforeseen environments. 

In summary, this paper presents an approach to design and 

implement an interactive navigation system for mobile robots using 

type 2 fuzzy logic controllers (T2FLC). This technique aims to 

enhance the robot's ability to navigate dynamic and uncertain 

environments effectively, providing a more robust solution to the 

challenges of obstacle avoidance and real-time path planning. 
 

II. MODEL OF THE MOBILE ROBOT USED IN OUR 

WORK 

The robot used in the simulation is a single-wheeled 

mobile robot, driven by two independently controlled wheels 

powered by separate motors. It may also be equipped with passive 

wheels to maintain stability. The real-world robot is assumed to 

have a range of sensors to measure the distance to nearby obstacles 

and monitor its speed. The navigation approach employed in this 

study follows an interactive navigation strategy. 

The primary objective of any robotic navigation system is 

to direct the robot towards a predefined target area. The secondary 

objective is to prevent collisions with obstacles. Both objectives 

are achieved by providing the robot with the necessary commands 

to minimize the discrepancy between its current position and the 

target location. For obstacle detection, appropriate sensors, such as 

ultrasonic sensors, are employed. 

It is assumed that the robot-target configuration is 

represented by TP = [xT, yT, θT]. Additionally, the error vector 

between the robot's actual position and the nearest obstacle is 

defined using two variables: DRO and θRO. Similarly, the error 

between the robot's actual position and the target location can be 

calculated by considering two parameters: DRT and θRT, as shown 

in (Figure.1). 

 
Figure 1: mobile robot used in our work. 

Source: Authors, (2025). 

Explanation of the abbreviations in (Fig.1): 
 

(xr, yr) : The robot position. 

(xT, yT) : The coordinates of the target point. 

V: Linear velocity. 

ω: Angular velocity. 

Vr : The speed of the right wheel. 

Vl : The speed of the left wheel. 

θR : The orientation of the robot. 

θ𝑇: The orientation of the target. 

θRT : The angle between the current orientation of the robot and 

that of the target. 

DRT : The distance between the robot and the target. 

III. STATE REPRESENTATION 

State representation in the context of mobile robots refers 

to how the various variables that describe a robot's state are 

modeled and used to control its behavior. This typically includes 

variables such as position, orientation, velocity, and other relevant 

parameters that completely characterize the robot's state at any 

given time. 

For a two-wheeled robot, the state representation is often 

expressed as a state vector that includes the robot's position on the 

plane (x, y), its orientation (θ), and sometimes linear and angular 
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velocities (v, ω). The aim is to relate control inputs, such as wheel 

speeds, to changes in these state variables. 

In summary, state representation is used to model the 

evolution of the robotic system over time using differential 

equations that describe the robot's dynamics. These models are 

essential for control, trajectory planning, and autonomous 

navigation. 

The kinematic model of the mobile robot is given by: 

{

 ẋ = V. cos(θR)

ẏ = V. sin(θR) 

θ̇ = ω              

                             (1)    

The total speed of the robot can be approximated as the 

average of the speeds of the individual wheels. Specifically, the 

total linear speed of the robot is given by the sum of the speeds of 

the left and right wheels divided by two. This approach assumes 

that both wheels are acting identically and that the robot is moving 

in a straight line, providing a simplified model of its forward speed. 

Substituting this gives us:                

{
 
 

 
  ẋ =

Vr+Vl

2
 . cos (θR)

ẏ =
Vr+Vl

2
 . sin (θR)

θ̇ =
Vr−Vl

2L
                  

                    (2) 

IV. DISCRETE MODEL FOR ROBOT MOTION 

 

We use the discrete version of this model, which is 

expressed as follows: the robot's motion is represented in discrete 

time steps, where the state of the robot at each step is updated based 

on the control inputs (such as wheel speeds) and the system's 

dynamics. This approach allows us to approximate the continuous 

model in a computationally feasible way, with the state being 

updated at each time interval according to the robot's kinematic 

equations. 

{
 
 

 
 

 

 xk+1 = xk +
V𝑟k+Vlk

2
. T. cos(θRk)

yk+1 = yk +
Vrk+Vlk

2
. T. sin(θRk)

θRk+1 = θRk + T.
Vrk−Vlk

2L
                

            (3) 

V. DISTANCE AND ANGLE COMPUTATION 

BETWEEN ROBOT AND TARGET 

To calculate the distance between the robot and its target, 

we use the Euclidean distance formula. This formula computes the 

straight-line distance between two points in a 2D plane, where the 

robot’s current position and the target’s position are represented by 

their respective coordinates (𝑥𝑅, 𝑦𝑅) for the robot and (𝑥𝑇, 𝑦𝑇) for 

the target.  

The Euclidean distance 𝐷; which is a crucial parameter for 

the fuzzy logic controller to adjust the robot’s movement towards 

the target effectively. 

DRT is given by: 

𝐷𝑅𝑇 = √eRTx
2 + eRTy

2            (4) 

 

Where: 

ex: The error between robot xR and target xT. 

ey: The error between robot yR and target yT. 

{
e𝑅𝑇x = xT − xR
eRTy = yT − yR

                                        (5) 

To calculate the direction or angle between the robot and 

the target, we need to determine the relative angle at which the 

robot should turn to face the target. This angle, denoted 𝜃𝑅𝑇, can 

be calculated using the inverse tangent function. The robot's 

direction is represented by the angle 𝜃𝑅 (the angle between the 

robot's direction and the reference axis), while the target's position 

is given by the coordinates (𝑥𝑇, 𝑦𝑇) and the robot's current position 

by (xR,yR). 

𝜃𝑇 = tan
−1 (

eRTy

eRTx
)                                        (6)  

  
The direction angle 𝜃𝑅𝑇 can be calculated as follows: 
 

𝜃𝑅𝑇 = 𝜃𝑇 − 𝜃𝑅                                             (7) 
 

VI. STRUCTURES OF ROBOT-TRGET FLC-RT 

 

The fuzzification, inference, and defuzzification processes 

are applied in the navigation behavior (Fig.2); using two inputs: the 

distance between the mobile robot and the target (DRT), and the 

angle between the robot’s current orientation and the target's 

orientation (θRT). The controller’s outputs are the velocities of the 

left (Vl) and right (Vr) wheels. 

 
Figure 2: Structure of FLC-RT. 

Source: Authors (2025). 

VII. DISTANCE AND ANGLE COMPUTATION 

BETWEEN ROBOT AND OBSTACLE 

To calculate the distance between the robot and an 

obstacle, we use the Euclidean distance formula. This formula 

computes the straight-line distance between two points in a 2D 

plane, where the robot’s current position is represented by 

coordinates (𝑥𝑅,𝑦𝑅) and the obstacle’s position is given by (𝑥𝑂,𝑦𝑂). 

The Euclidean distance 𝐷𝑅𝑂 is a key parameter for the fuzzy logic 

controller to adjust the robot’s movement and avoid collisions 

effectively. 

The distance 𝐷𝑅𝑂 is given by: 

𝐷𝑅𝑂 = √eROx
2 + eROy

2            (8) 

Where: 

eROx: The error between robot xR and obstacle xO. 

eROy: The error between robot yR and obstacle yO. 

{
e𝑅𝑂x = x𝑂 − xR
eROy = y𝑂 − yR

                              (9) 

To calculate the direction or angle between the robot and an 

obstacle, we need to determine the relative angle at which the robot 

should turn to face the obstacle. This angle, denoted θRO, can be 

calculated using the inverse tangent function. The robot's direction 

is represented by the angle θR (the angle between the robot's 
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direction and the reference axis), while the obstacle's position is 

given by the coordinates (xO,yO) and the robot's current position by 

(xR,yR). 

𝜃𝑅𝑂 = tan
−1 (

eROy

eROx
)                           (10)  

 

VIII. STRUCTURES OF ROBOT-OBSTACLE FLC-RO 

 

The fuzzification, inference, and defuzzification 

processes are applied in the obstacle avoidance behavior (Fig. 3), 

using two inputs: the distance between the mobile robot and the 

obstacle (DRO), and the angle between the robot’s current 

orientation and the obstacle's orientation (θRO). The controller’s 

outputs are the velocities of the left (Vl) and right (Vr) wheels. 

 

Figure 3: Structure of FLC-RO. 

Source: Authors (2025) 

 

IX. BLURRED NAVIGATION CONTROLLER 

STRUCTURE WITH OBSTACLE AVOIDANCE 

 

The fuzzing, reasoning, and de-fuzzification operations 

are implemented using two separate fuzzy logic controllers (FLCs) 

for the navigation and obstacle avoidance behaviors in the system 

(Figure 4). The FLC for robot and target navigation (FLC-RT) uses 

two inputs: the distance between the moving robot and the target 

(DRT) and the angle between the robot’s current direction and the 

target direction (θRT). The controller’s outputs are the left (Vl) and 

right (Vr) wheel speeds, which guide the robot toward its target 

position. When the robot is navigating toward the target, the FLC-

RT is active, ensuring efficient movement. If an obstacle is 

detected, the system switches to the FLC for robot obstacle 

avoidance (FLC-RO), which uses the distance between the robot 

and the obstacle (DRO) and the angle between the robot’s current 

direction and the obstacle direction (θRO) as inputs. The FLC-RO 

outputs adjust the robot’s movement to avoid collisions while 

continuing to move toward its target. This dynamic switching 

ensures smooth and safe navigation, while balancing the two goals 

of reaching the target and avoiding obstacles. 

 

 
Figure 4: Structure of the navigation controller with obstacle 

avoidance. 

Source : Authors (2025) 

Then, the selected fuzzy logic controllers, as shown in 

(Fig.5) and (Fig. 6), should be designed to ensure that the distances 

DRT and θRT between the robot and the target are minimized, i.e., 

ensure that DRT → 0, θRT → 0 when t → ∞. It takes DRT and θRT as 

inputs and produces Vl and Vr as outputs. The same is true for 

obstacle avoidance in Figure 4 because the inputs are : DRO and θRO 
 

 
Figure 5 : Fuzzy rules set of the Target FLC-RT 

Source : Authors (2025) 

X. FUZZY LOGIC RULE TABLES. 

We introduced fuzzy rules according to several experiments from 

which we extracted the following tables: 

The rule base for the target fuzzy controller FLC-RT is specified in 

Table 1. 

Table 1: Fuzzy rule sets of the target FLC-RT. 

DRT/θRT NB N Z P PB 

S Z/Z Z/Z Z/Z Z/Z Z/Z 

M F/UM F/M M/M M/F F/UM 

B F/UM F/M F/F M/F F/UM 

Source: Authors (2025). 

The linguistic variables for the inputs in this controller are:  

DRT = (S:Small, B :Big, Z :Zero ) 

θRT  = (NB : Negativebig, N : Negative, Z : Zero,  

P : Positive, PB : Positivebig)       

The linguistic variables for the outputs in this controller are: 

Vr = F: Fast, M : Medium, UM : Under-Medium, Z : Zero.  

Vl = F: Fast, M : Medium, UM : Under-Medium, Z : Zero.   

Examples for this fuzzy control rule is: 

if θRT is N and DRT is M, then vr is F and vl is M 

if θRT is Z and DRT is S, then vr is Z and vl is Z 

 

The rule base for the obstacle avoidance FLC-RO fuzzy controller 

is specified in Table 1. 

Table 2: FLC-O fuzzy rule set for obstacle avoidance. 

DRO/θRO NB N Z P PB 

S M/F Z/M Z/F M/Z F/M 

M F/F M/M M/M M/M F/F 

B F/F F/F F/F F/F F/F 

Source: Authors (2025). 

The linguistic variables for the inputs in this controller are:  

DRO = (S: Small, M: Medium, B : Big) 
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θRO = (NB: Negativebig, N: Negative, Z: Zero,        

P : Positive, PB : Positivebig) 

The linguistic variables for the outputs in this controller are:  

Vr = F: Fast, M : Medium, Z : Zero.   

Vl = F: Fast, M : Medium, Z : Zero.   

Examples for this fuzzy control rule is:  

• if θRO is P and DRO is B, then vr is F and vl is F 

• if θRO is PB and DRO is S, then vr is F and vl is M 

XI. MEMBERSHIP FUNCTION 

We present a series of schematic diagrams that show the 

membership functions (Figure 6-a, 6-b, 6-c, 6-d) of FLC-RT and 

(Figure 7-a, 7-b, 7-c, 7-d) of FLC-RO ; and for both the inputs and 

outputs of a fuzzy logic controller used in a mobile robot navigation 

system. These diagrams are essential for visualizing how a fuzzy 

logic system interprets different sensor inputs and translates them 

into control actions for the robot. The membership functions 

determine the degree of truth for different input values, allowing 

the system to make decisions based on fuzzy rules rather than 

binary logic. 

 

 
(a): MF-INPUT1-DRT. 

 
(b): MF-INPUT2- θRT 

 
(c): MF-OUTPUT1-Vr 

 
(d): MF-OUTPUT2-Vl 

Figure 6: Membership function of the FLC-RT input/output 

variables. 

Source: Authors (2025) 

 
(a): MF-INPUT1-DRO 

 
(b): MF-INPUT2- θRO 

 

(c): MF-OUTPUT1-Vr 
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(d): MF-OUTPUT2-Vl 

Figure 7: Membership function of the FLC-RO input/output 

variables. 

Source: Authors (2025) 

XII. OUTDOOR LIGHTING 

The mobile robot employed in our experiments is the 

Pioneer  3-DX, depicted in (Figure 8-a). This robot is a compact, 

lightweight, two-wheel, two-motor differential-drive system, 

making it ideal for indoor laboratory or classroom environments. 

The wheel axle length for this model is L = 46. It is equipped with 

a front SONAR sensor, a battery, wheel encoders, and a 

microcontroller running ARCOS firmware. The Advanced 

Robotics Interface for Applications (ARIA) serves as an effective 

platform for integrating user control software, as it efficiently 

handles low-level client-server interactions, including serial 

communication, command and status packet processing, cycle 

timing, multi-threading, and accessory control management. The 

experiments were conducted with a sampling time of T = 0.3 s. 

 

 
Figure 8.a: Mobile robot for test P-3DX. 

Source : Authors (2025) 

The robot's position is determined using optical quadrature 

encoders. The test prototype is equipped with eight sonar sensors, 

numbered as shown in (Figure 8-b). The measured distance to the 

nearest obstacle is determined as the minimum value from all 

sensors, expressed as: 

𝑑𝑟=min(𝑑1, 𝑑2, …,𝑑8)             (11) 

where : 

𝑑𝑖 represents the distance to the obstacle measured by the i-th 

ultrasonic sensor. The angle between each consecutive pair of 

sensor directions is 20 degrees, except for the four side sensors 

(so0, so7, so8, and so15), where the angle between them is 40 

degrees. 

 
Figure 8.b: Sonars 

Source : Authors (2025) 

XIII. ENVIRONMENT WITH STATIONARY 

OBSTACLES 

In the first test, we tackled the challenge of moving the robot 

from an initial position, defined by SP = [0, 0], to a target position 

SP = [3, 2] (represented by black-filled triangles) within a crowded 

environment with five fixed polygonal obstacles, as shown in 

(Figure 9-a). It is important to note that the target configuration is 

located within a dangerous area due to its proximity to the 

obstacles. The results of applying the proposed method are 

presented in (Figure 9-b). These results highlight the effectiveness 

of the proposed approach in guiding the robot towards its target 

configuration while adhering to the kinematic constraints and 

successfully avoiding collisions with the obstacles. 
 

 
(a): Test-1 environment 

 

 
(b): Navigation result. 

Figure 9: Test-1 result. 

Source: Authors (2025). 
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XIV. ENVIRONMENT WITH DYNAMIC 

OBSTACLES 

 

The second test, the results of which are shown, was 

conducted in the workspace environment shown in (Figure 10-a). 

This environment has a U-shaped (concave) structure, which poses 

a significant challenge in the field of robotics, as many interactive 

navigation methods are prone to getting stuck at local minima. The 

results highlight the effectiveness of the proposed method in 

overcoming the local minima problem. In addition. 

The same scenario was tested with a dynamic obstacle, 

represented by a blue triangle in (Figure 10-b). The results from 

this scenario also confirm the robustness of the proposed approach 

in dealing with dynamic obstacles. 

 

 
(a): Navigation in U-shaped. 

 

 
(b): Navigation in dynamic environment. 

Figure 10: Test-2 result 

Source : Authors (2025) 

 

XV. CONCLUSIONS 

 

This paper presents a local navigation strategy aimed at 

ensuring the safe operation of mobile robots in dynamic and 

uncertain environments. The approach is inspired by human 

reasoning and involves the creation of two behavioral planners 

utilizing a type-2 fuzzy logic controller. The first controller guides 

the robot towards its target, while the second controller directs the 

robot away from obstacles. A detailed, step-by-step explanation of 

the developed controllers is provided. To demonstrate the 

effectiveness of the proposed method, numerical tests across 

various scenarios and environments are presented. Future work 

will focus on adapting the proposed approach to facilitate robot 

navigation in 3D environments. 
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