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This paper proposes using machine learning techniques to implement a failure mode 

classifier for automatic fail classification in pin-through hole (PTH) connector terminals in 

printed circuit boards (PCB). The Support Vector Machine (SVM), K-nearest neighbor 

(KNN), and Decision Tree (DT) algorithms were used. It was evaluated using a dataset of 

real images from manufacturing multimedia centers for the algorithm training phase. 

Subsequently, it thoroughly evaluated the results of the metrics obtained from each trained 

model. The main objective is to select the model with the best precision in predicting two 

failure modes to be implemented at the automotive factory and improve the inspection phase 

to reduce the defect and rework rates. The failure mode classifier trained with the SVM 

algorithm obtains the best precision, with an accuracy of 99% in predicting the dataset of 

tested images. KNN and DT achieved 78% and 79% accuracy, respectively, but DT was 

unstable. The final decision was to implement the SVM algorithm that obtained the best 

accuracy in decision-making for the failure modes evaluated in the research. 
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I. INTRODUCTION 

 

Printed circuit boards (PCBs) are essential in the 

manufacturing of electronic devices. In recent years, the demand 

for more sophisticated products with more embedded functions has 

made PCBs more complex, requiring higher quality and the 

application of lean thinking theory in production lines [1]. 

In manufacturing, the search for defect-free products has 

demanded more sophisticated inspection methods [2], using 

methodologies and algorithms capable of extracting knowledge 

from data [3]. PCB inspection is a crucial process to ensure the 

reliability and quality of the product before it is made available to 

the end consumer. Inspection is often performed visually by human 

operators, which can result in variations in the classification of 

defects due to physical and emotional inconsistencies of each 

operator [4],[5]. This has led industries to seek more efficient 

inspection methods to identify defects in the early stages of 

production [6]. 

Automatic Optical Inspection (AOI) has been used in 

industry to assist in identifying defective components in PCBs [7]. 

AOI systems generally employ defect inspection methods by 

scanning the board and analyzing it using techniques such as local 

feature matching with a standard image [8] and morphological 

image comparison to detect defects, achieving excellent results. 

However, problems with reflective materials can cause false 

failures [9]. 

With the sophistication and miniaturization of components 

inserted in PCBs, the challenges for fault detection become 

increasingly complex [10]. Detecting the absence of terminal 

projections and recognizing components and their similarities are 

complex tasks by manual visual inspection [11]. This increasingly 

requires traditional image classification algorithms and 

convolutional neural network models for defect detection [9]. 

Studies based on automatic visual inspection for detecting PCB 

faults through Machine Learning [7] and convolutional neural 

networks [8] have gained significant space and attention within the 

scientific community in recent years. According to [1], several 

methods have been proposed to detect and classify a variety of 

defects in PCBs. These methods are increasingly used in industry 

for decision-making, enabling the transformation of traditional 
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manufacturing to Industry 4.0 [12],[13],[14]. This article proposes 

methods to detect and classify defects without the projection of 

power connector terminals using machine learning algorithms. The 

analyzed PCB dataset was collected from a real production line of 

an industry installed in the Manaus Industrial Pole located in 

Brazil. Subsequently, the accuracy of the best method for 

implementation in detecting the absence of projection of pins will 

be analyzed. 

II. THEORETICAL FRAME 

The enumerations of citations in the body of the article must 

be sequenced in the order in which they appear, according to the 

example shown below. 

The sequence of actions is structured so that the dynamics 

of the image dataset classification include control mechanisms 

capable of compensating for possible disturbances. In this way, the 

classifier can generate a correct output, even if there are 

interferences in its learning process [15]. This is achieved by 

comparing the actual prediction values (output) with the input 

values (test images). 

Control systems are physical models that show the 

dynamics of a system and are usually composed of blocks that can 

be analyzed mathematically [16]. The block diagram of the Control 

System for classification is shown in Figure 1. 
 

 
Figure 1: System diagram. 

Source: Authors, (2025). 

 

The dynamics of the classification system start with the 

reference data. To further perform the classification process of the 

model for each machine learning algorithm to compare the output 

data with the reference image to verify the failure mode. The acting 

error signal provides feedback to the system to reduce the error and 

prevent external changes from affecting the system's behavior. 

Then it will obtain information from the best failure mode classifier 

to predict the image classification for deciding the OK or NOK 

state of the inspected PCB. 

 

II.1 BIBLIOMETRIC ANALYSIS ON MACHINE 

LEARNING AND SMART INSPECTIONS FOR PTH 

COMPONENTES 

A bibliometric analysis was performed to analyze the 

dynamics of research evolution, considering machine learning 

algorithms used for quality inspection of the manufacturing process 

in the context of Industry 4.0 and Quality 4.0. The final search was 

realized in December 2024 on the Scopus database and Web of 

Science Database with the terms "Pin Through-hole" or "PCB" and 

"Machine Learning" or "SVM" or "KNN" or "Decision Tree" or 

“smart-vision inspection”, applied in the titles, abstracts, and 

keywords of the articles. For the portfolio, only articles with 

publications in English were considered. 

Based on the adopted methodology, 220 articles were found 

in qualitative synthesis; from the articles selected for content 

analysis from the timespan 2019 to 2024, quantitative analyses 

were developed with the Bibliometrix tool of the R Studio® 

software, following the procedure developed by [17]. 

 

 
Figure 2: Prisma methodology. 

Source: Authors, (2025). 

 

Figure 2 shows the PRISMA methodology used on the 

research [18]. 

The final search string is presented as follows: 

String to Scopus database- TITLE-ABS-KEY ((“Pin 

Through-hole” OR “PCB”) AND (“machine learning" OR “SVM” 

OR “KNN” OR “Decision Tree” OR “smart-vision inspection”)) 

String to Web of Science database - TS= ((“Pin Through-

hole” OR “PCB”) AND (“machine learning" OR “SVM” OR 

“KNN” OR “Decision Tree” OR “smart-vision inspection”)) 

Figure 3 shows the temporal evolution of publications in the 

selected portfolio. 2016 was the first paper in which a publication 

appeared in an indexed journal in the considered databases. [19] 

presented a system with a neural network to predict the skew factor 

of PCB laminate designs. [20] described a model to predict the 

production cycle time of high-mixed PCB based on machine 

learning methods. 

Since 2019, the number of publications has grown 

consistently. Between 2019 and 2024, publications increased by 

162%. This analysis shows the growing interest in smart inspection 

using machine learning algorithms. 

 

 
Figure 3: Temporal evolution of publications. 

Source: Authors, (2025). 

 

Figure 4 shows the main countries with associated studies 

in the research area, categorized by publications authored by only 

one country (in blue) and several countries (in red). China presents 

great performance with 60 publications, followed by USA with 46, 

Germany with 19, India with 17, and the other countries with 7 or 

fewer publications. 
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Figure 4: Publication by country. 

Source: Authors, (2025). 

 

Figure 5 shows a multidimensional scaling keyword co-

occurrence network [21] using an edge betweenness centrality 

clustering algorithm. This analysis allows the identification of a 

main group of terms (in red) that deal with the intersection between 

the themes investigated in this research. 

 

 
Figure 5: Keyword co-occurrence network based on the 

bibliometric research. 

Source: Authors, (2025). 

 

This analysis allows the identification of a main cluster of 

terms (in red) that deals with the intercession between “Machine 

learning” and “printed circuit board”. Around the central terms 

other topics as “deep learning”, “defect detection”, “artificial 

intelligence”, “computer vision” appear in the co-occurrence 

network. 

Figure 6 shows a wordcloud graphic regarding the most 

common expressions among the analyzed articles. Based on that it 

is possible to summarize that the central themes involved in the 

area of machine learning, where the research seeks to correlate the 

concept of printed circuit board and defect detection, are the terms 

“deep learning”, “artificial neural network”, which demonstrates 

that most of the studies developed in the area are concerned with 

defining concepts, implementing new methods to existing models 

in the smart inspection environment with the objective of 

improving the digital transformation. 
 

 
Figure 6: WordCloud based on the bibliometric research. 

Source: Authors, (2025). 

II.2 MACHINE LEARNING 

The growing complexity of the problems to be 

computationally treated, and the speed and volume generated by 

different sectors, motivated the development of more sophisticated 

and autonomous computational tools, more independent from 

human intervention, for the acquisition of knowledge. Most of 

these tools are based on machine learning [22]. 

The main objective of Machine Learning (ML) is to 

understand structures, just like in most statistical models. It proves 

itself mathematically, through assumptions that allow systems to 

be replicated by examining data structures, even if you don't know 

what the structure looks like. Through the interactivity of 

understanding machine learning data, it allows for the automation 

of learning [1]. 

Machine learning algorithms have been widely used in 

several tasks, which can be divided into predictive [22],[23], and 

descriptive [1]  

Figure 7 hierarchically illustrates the learning categories 

and associated tasks. 

 

 
Figure 7: Classical Learning hierarchy. 

Source: Authors, (2025). 

 

II.3 SUPPORT VECTOR MACHINE - SVM 

Support vector machines (SVMs) are a supervised machine 

learning technique used in classification and regression problems 

[24],[25]. SVMs seek to find an optimal hyperplane to separate a 

data set [26]. Initially, SVMs only allowed linear separation 

methods [27]. However, it is possible to perform non-linear class 

separation by transforming the data into a higher dimension, where 

they can be separated linearly [28]. 

SVM proposes a hyperplane that separates the data set 

belonging to each class so that the data characteristics are on one 

side of the hyperplane. Throughout this process, the SVM 

maximizes the distance between the hyperplane of each class so 

that the separation margin is the smallest distance between the 

points of the hyperplane of each class. The generation of the 

hyperplane is determined by the subsets of points that form the 

classes, known as support vectors [28]. 

SVM uses a standard dataset to create a binary classifier. To 

perform the function 𝑓: ℝ𝑛 → {±1} have named as instruction 

examples, where xi contains n features in a specific class yi [27], 

illustrated in equation (1). 
 

(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)  ∈  ℝ𝑛 𝑥 ±  1}                        (1) 
 

Thus, 𝑓 will perform the classification of the samples (x, y), 

where 𝑓(𝑥) = 𝑦  for each (x, y) made using the same probabilistic 

distribution P(x, y) of the training data, as per [28]. The structural 

risk minimization method used by statistical learning theory is the 

basis of the SVM variable selection. The best-known definition of 
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statistical learning theory is dimension, which defines the most 

significant number of points that can be separated in various ways 

[27]. 

II.3.1 SEPARATION HYPERPLANE 

By using the structural risk minimization principle to 

identify the optimal hyperplane to maximize the margin of the 

closest examples, SVMs create a series of hyperplanes whose 

dimension boundaries can be processed [27]. One example is the 

patterns for linearly separable classes, in which the class yi can only 

receive values +1 and -1 [28]. Equation (2) illustrates the decision 

surface of a hyperplane to perform class separation. 
 

(ω. 𝓍) + b = 0, ω ∈  ℝ𝑛, b ∈  ℝ                           (2) 
 

The ω gives the adjustable weight vector and b gives the 

threshold. Illustrated in equation (3). 
 

{
(ω. 𝓍) + b ≥ 0, para  𝑦𝑖 = 1 

  (ω. 𝓍) + b < 0, para  𝑦𝑖 = −1 
                         (3) 

 

The closest data point is called the separation margin. 

Figure 8 illustrates the optimal hyperplane obtained using the 

maximum class separation margin. 

 

 
Figure 8: Definition of the optimal hyperplane. 

Source: Authors, (2025). 

 

Figure 8 illustrates the maximum margin separator, 

represented by the solid red line, and the margins, represented by 

the dashed lines. The support vectors are the holes highlighted by 

the dashed circle and the connector terminals highlighted by the 

green squares closest to the separator. 

 

II.4 K-NEAREST-NEIGHBOR - KNN 

The k-nearest neighbors (KNN) classifier is a classical 

classification algorithm that uses nonparametric methods. Its basic 

concept is determining class labels based on their k nearest 

neighbors [29]. KNN classifies the K points of the closest training 

set to find K elements with the smallest distance. Figure 9 

illustrates the definition of KNN. 

Figure 9 illustrates the representation of the data already 

trained with its classifications previously defined for the Pin and 

Hole classes. In summary, the distance of the new object will be 

determined by defining the k neighbors but closest to the category. 

When K is defined as having three or four occurrences, it will be 

classified as Pins since two of the three closest neighbors are Pins. 

 
Figure 9: Definition of the KNN. 

Source: Authors, (2025). 

 

By approximating the k values, the distance between points 

x and y is calculated using the Euclidean or Manhattan distance 

[30],[31]. The calculation of the space between the distances of the 

objects is demonstrated by the equations (4 and 5). 

The Euclidean distance between point x and y is given by 

equation (4): 
 

𝑑(𝑥, 𝑦) =  √(𝑥1, 𝑦1)2 + (𝑥2, 𝑦2)2 + ⋯ + (𝑥𝑛, 𝑦𝑛)²            (4) 

 

The smaller distance between points x and y was determined 

by measuring the Euclidean distance. 

The Manhattan distance between points x and y is given by 

the equation (5): 
 

(𝑥, 𝑦) = ǀ𝑥1 − 𝑦1ǀ + ǀ𝑥2 − 𝑦2ǀ + ⋯ + ǀ𝑥𝑛 − 𝑦𝑛ǀ           (5) 
 

The sum of the absolute differences between points x and y 

in all dimensions of space will determine the distance to 

Manhattan. 

II.5. DECISION TREE 

Nonparametric models for data classification and prediction 

based on supervised learning are known as decision trees [32]. 

Decision trees use the splitting strategy, which means that the 

training data set is divided into several smaller subsets until one of 

the subsets is of the same class or until the class is the predominant 

one [33]. 

The decision tree is constructed from the compactly 

organized data, which recursively classifies new examples. This 

creates a data structure [32], corresponding to a node or leaf as a 

class or decision node that can test several attributes. When each 

result creates a new subtree [33]. A decision tree is shown in Figure 

10. 

The decision tree nodes are represented by the NOK 

attribute and distributed in the tree according to their level. The 

segments that define the nodes to which each attribute belongs are 

used to test the values. The attributes of the categorical type are 

validated using the equal sign, as shown in Figure 10 by the white 

circles, where each circle is the attribute. Decision trees use 

algorithms to identify the value assigned to the node and represent 

quantitative values in a specific range of values. These algorithms 

also determine the branches' division into subsamples comparable 

to the variable resulting from the classification [33]. 
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Figure 10: Decision tree model. 

Source: Authors, (2025). 

 

III. RESEARCH STAGE 1 - CLASSIFIERS 

In this section, the experiments and results used to carry out 

this work are presented. Accuracy comparisons were made 

between the machine learning algorithms applied in the training 

and classification of the database of failure modes in PCBs. 

 

III.1 IMAGE PRE-TREATMENT 

The two classes and the number of images for training, 

testing, and validation of the classifiers are presented in Table 1. 

 

Table 1: Definition of classes for classification. 

Classes Training Validation Testing 

NOK 380 95 95 

OK 380 95 95 

Totals of Imagens 760 190 190 

Source: Authors, (2025). 

 

The images were captured in grayscale and used for 

supervised training. Since the process involves object detection, the 

images need to be cataloged. Figure 11 demonstrates the defined 

areas of interest. 

 

 
Figure 11: Definition of the image area of interest. 

Source: Authors, (2025). 

 

The standardization of classes was implemented because 

the terminals and screws do not present differences in shape or 

color. Each class uses images with a resolution of 1280 x 720 pixels 

for training and validation. The definition of the classes is 

presented in Figure 12. 

 

 
Figure 12: Definition of classes. 

Source: Authors, (2025). 

 

III.2 FAILURE MODES DEFINED IN RESEARCH 

The acquisition of the dataset to detect the absence of 

projection of the connector terminals and classification of failure 

modes were obtained on the production line through the capture of 

1140 images of black and white PCBs with different failure modes, 

using criteria from Failure Mode and Effects Analysis (FMEA) 

[34], [35],[36],[37],[38], [39]. 

The creation of only two classes for failure mode detection 

was considered to represent PCBs without failures and PCBs with 

failures, as mentioned in Table 2. 

 

Table 2: Failures Modes. 

Items Defect Type Pictures Description 
Specificat

ion 

1 
Missing Pin 

and Screw 

 

No evidence of 

pins and screw 
Nok 

2 
Missing Pin 

and Screw 

 No evidence of 

pins projection 

and missing 
screw 

Nok 

3 
Missing 
Screw 

 Missing screws 

(2x) 

 

Nok 

4 

Missing Pin, 

Screw and 

Connector 

 
No evidence of 

pins projection 

and missing 
screw and 

connector 

 

Nok 

5 Missing Pin 

 

There is no 

evidence of pin 
projection 

Nok 

6 
Golden 

Sample 

 

Solder splashes 

on metal 

component 

surfaces impact 
form, fit or 

function. 

Ok 

Source: Authors, (2025). 

 

IV. EXPERIMENTS 

During the experiments, three machine learning algorithms 

were used to build a failure mode detection model, to classify 

samples, and to determine the class corresponding to the failure 

mode: 

I.To create the failure mode detector, we used the support vector 

machine (SVM) algorithm in the first experiment with a linear 

kernel since the 600 images in the database are linearly separable. 

The classifier performs the classification of each data sample to 

classify each training sample into its corresponding NOK or OK 

class. After completion, the classifier will be able to make new 

predictions of failure modes in the latest samples of PCB images. 
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II.The decision tree algorithm was used to perform the second 

experiment. The algorithm created a failure mode detector from an 

empty tree, iteratively searching for the best attribute to divide the 

data. The algorithm used the 600 images in the database to achieve 

this goal. If the data were divided and belong to the same class, a 

leaf will be created with the NOK or OK label. After training, the 

classifier predicts the class of new samples of PCB images. 

III.The KNN algorithm was used in the third experiment. Data was 

given to measure the test point of a specific value or label to predict 

the training set, and then the nearest k points were selected to make 

the class prediction based on the label of its neighbors to create the 

failure mode detector. The cross-validation method was used to 

select the k parameter. The algorithm will have access to the 600 

images in the database. If the points in the classification belong to 

the same class, the nearest neighbor will be labeled as NOK or OK. 

After training, the classifier will be able to make the predictions. 

The experiments were performed using the diagram of the 

classification methods suggested in Section 2. The objective of the 

experiments is to verify the efficiency of the algorithms in 

predicting failure modes. After the training, the metrics generated 

during the training will be compared to define which models will 

be implemented in the production line. 

 

V. VALIDATION OF FAILURE MODE DETECTION 

The confusion matrix is a popular method for evaluating 

machine learning algorithm metrics, such as precision, accuracy, 

and ROC curves [40],[41], whose values are found through the 

confusion matrix illustrated in Table 3. 

 

Table 3: Confusion Matrix 

 Is there an image failure mode? 

True False 

Was the 

algorithm 

detecting the 

failure mode in 

the image? 

 

True 

 

True Positive 

(TP) 

False Negative 

(FN) 

 

False 

 

False Positive 

(FP) 

True Negative 

(TN) 

Source: Authors, (2025). 
 

The variable (TP) corresponds to the number of failure 

modes classified as good, as shown in the confusion matrix in 

Table 3. The variable (TN) corresponds to the approved failure 

modes. The number of failures (OK) classified as non-failures 

(NOK) is represented by the variable (FN). In contrast, the number 

of failures (NOK) classified as failures (OK) is represented by the 

variable (FP). The variables (TP and TN) indicate the hits that the 

classifier obtained in its result, while the variables (FN and FP) 

indicate the errors caused in the classification of the classifier. 

Accuracy, sensitivity, and specificity were used to measure 

the performance of the classifiers. The adequate number of positive 

and negative samples represents the precision of the model. 
 

VI. RESULTS AND DISCUSSIONS 

The paper's main objective is to obtain the accuracy of the 

best machine learning algorithms for developing a failure mode 

classifier to perform automatic visual inspection of the projection 

of the terminals of PTH components. 

VI.1 SVM 

The experiment metrics, obtained from the SVM 

classification, are demonstrated through the confusion matrix and 

learning curve generated after training the failure mode model, 

according to Figure 13. 
 

 
Figure 13: Definition of classes for SVM. 

Source: Authors, (2025). 

 

The TP variable demonstrates the accuracy of the failure 

mode classification of PCBs classified as NOK with a precision of 

1.00. The TN variable represents the classification accuracy of OK 

PCBs with a precision of 0.98. The FP represents the number of 

OK PCBs classified as NOK with a precision rate of 0.02, 

demonstrating a small error in the prediction. The FN demonstrates 

the number of NOK PCBs classified as OK with a precision of 

0.00, demonstrating that the classifier did not make a mistake in 

this prediction. 

The classifier performance metrics were obtained using the 

confusion matrix data of the trained SVM. The most used metrics 

for evaluating machine learning models are learning and ROC 

curves, accuracy, specificity, and sensitivity [40]. Figure 14 

illustrates the results of the SVM classifier metrics. 

 

 
Figure 14: SVM model evaluation metrics. 

Source: Authors, (2025). 

 

The accuracy of the model reflects its performance during 

training and learning. The accuracy calculated is the total number 

of correct answers divided by the total number of images in the 

database, demonstrating the model's ability to make correct 

predictions. The accuracy of the SVM was 99%. Precision 

considers only true positive values, preventing false positive values 

from introducing biased errors in the result. The recall metric 

indicates the frequency with which the image is correctly identified 
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as belonging to a given class. The f1-score, the harmonic mean 

between precision and recall, evaluates the quality of the model's 

training. This metric is fundamental in imbalanced datasets. Figure 

15 illustrates the accuracy of the learning curve when testing 

images classified by the linear SVM algorithm. 
 

 
Figure 15: Learning curve for SMV. 

Source: Authors, (2025). 

 

Figure 15 shows the accuracy of the model's learning curve. 

It is noticeable that the training accuracy increases with the number 

of images used in the algorithm. As we approach 93 tested images, 

it is evident that the accuracy has increased, remaining consistent 

and stable, with an accuracy of 99% at the end of training. 

 

VI.2 KNN 

The KNN algorithm was used in the second experiment to 

train the failure modes. In this scenario, the same database was used 

under the same conditions and quantity mentioned in the first 

experiment. Figure 16 illustrates the confusion matrix generated 

after completing the KNN training. 

 

 
Figure 16: Definition of classes for KNN. 

Source: Authors, (2025). 

The variable (TP) represents the number of PCBs classified 

as NOK with an accuracy rate of 1.00. The variable (TN) represents 

the PCBs approved OK, with an accuracy of 0.56. The variable 

(FP) represents the total number of PCBs OK and classified as 

NOK, with an accuracy of 0.44. Moreover, the variable (FN) 

represents the number of PCBs classified as NOK and classified as 

OK, with an accuracy rate of 0.00. The results of the metrics are 

illustrated in Figure 17. 

 

 
Figure 17: KNN model evaluation metrics. 

Source: Authors, (2025). 
 

In the model's accuracy of the KNN was 78%, the precision 

of values for NOK failed PCBs was 0.69, and for OK PCBs, it was 

1.00; only the true positive values were used. In the recall, NOK 

PCBs had 1.00, while OK PCBs had 0.56. This demonstrated the 

frequency of an image in a specific class. The final score of the 

model training can be seen in the f1-score metric, where NOK 

PCBs had 0.82 and OK PCBs were 0.72. Figure 18 shows the 

training and testing learning curve accuracy of images classified by 

KNN. 
 

 
Figure 18: Learning curve for KNN. 

Source: Authors, (2025). 
 

Figure 18 shows the accuracy of the learning curve of the 

model in the second experiment, where the accuracy of the training 

increases with the number of images used in the algorithm training. 

The stability of the model is noticeable after 100 images were 

tested, remaining stable and constant. At the end of the training, the 

accuracy was 78%. 
 

VI.3 DECISION TREE 

The third experiment used the decision tree algorithm to 

perform failure mode training. The dataset was used in the same 

quantity and conditions as in the second experiment. The confusion 

matrix created after the decision tree algorithm training was 

completed is shown in Figure 19. 
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Figure 19: Definition of classes for DT. 

Source: Authors, (2025). 

 

The variable (TP) represents the number of PCBs classified 

as NOK with an accuracy rate of 0.59. The variable (TN) represents 

the PCBs approved OK, with an accuracy of 1.00. The variable 

(FP) represents the total number of PCBs OK and classified as 

NOK, with an accuracy of 0.00. And the variable (FN) represents 

the number of PCBs classified NOK and classified as OK, with an 

accuracy rate of 0.41. The results of the metrics are illustrated in 

Figure 20. 

 

 
Figure 20: Decision tree model evaluation metrics. 

Source: Authors, (2025). 

 

In the model, the accuracy of the DT was 79%, the precision 

of values for NOK failed PCBs was 1.00, and for OK PCBs, it was 

0.71; only the true positive values were used. In the recall, NOK 

PCBs had 0.59, while OK PCBs had 1.00. This demonstrated the 

frequency of an image in a specific class. The final score of the 

model training can be seen in the f1-score metric, where NOK 

PCBs were 0.74 and OK PCBs were 0.83 on the final classification 

report. 

Figure 21 shows the accuracy of the training and testing 

learning curve of images classified by DT. The training accuracy 

varies throughout the training process as the number of images the 

algorithm processes increases. The model demonstrates instability, 

reaching a final accuracy of 79%. 

 
Figure 21: Learning curve for DT. 

Source: Authors, (2025). 

 

Table 4 presents the results of the classifier metrics. The 

accuracy of the classification of failure modes by the SVM 

algorithm was the best. However, the classification performed with 

the KNN and DT algorithms did not accurately identify the failure 

modes. 

 

Table 4: Summary of model classification metrics. 
Algorithm Class Precision Recall f1-score 

SVM 
NOK 0.98 1.00 0.99 

OK 1.00 0.98 0.99 

KNN 
NOK 0.69 1.00 0.82 

Ok 1.00 0.56 0.72 

DT 
NOK 1.00 0.59 0.74 

OK 0.71 1.00 0.83 

Source: Authors, (2025). 

 

The performance of the classification models created in this 

study was evaluated using the ROC curve. Figure 22 shows the 

relationship between true and false positive rates at various 

decision thresholds. This allows us to determine the best-

performing area under the curve (AUC) in classifying failure 

modes. The SVM showed the best performance, with an AUC of 

1.0, indicating that the model has excellent accuracy. On the other 

hand, the KNN and DT algorithms had an average AUC of just 

over 0.5, indicating a tendency towards misclassification and 

unsatisfactory performance. 
 

 
Figure 22: ROC curve of classification models. 

Source: Authors, (2025). 
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VII. CONCLUSIONS 

The industrial process depends on detecting failure modes 

in the production of electronic equipment, especially in visual 

inspection, which is still performed manually by human operators. 

It is common for this process to present failures due to factors such 

as fatigue and emotional problems of the human operator, which 

can affect the inspection result. The industry has sought to 

incorporate automatic visual inspection systems into its processes 

to solve these problems. 

The experiment carried out with the failure mode classifier, 

trained using the decision tree algorithm, aimed to categorize the 

images from the PCB database into the classes "NOK" (non-

conforming) and "OK" (conforming). During the process, the 

model was evaluated for its ability to distinguish between the 

classes, but the results were unsatisfactory. The final accuracy 

obtained was 79% in the images tested, indicating poor 

performance, with significant errors in classification and 

prediction. This limitation is evidenced in Figure 20, where the 

learning curve demonstrated a marked instability throughout the 

training, suggesting that the model could not adequately generalize 

the failure patterns, which compromised its effectiveness in 

classification tasks. 

The experiment used a failure mode classifier based on the 

K-Nearest Neighbors machine learning algorithm. After training, 

the model presented an accuracy of 78% in the tested images, 

which evidenced the presence of significant errors in classification 

and prediction. Figure 17 illustrates the model's performance, 

demonstrating in the learning curve the instability of accuracy in 

both the test and training data throughout the classification process. 

This instability suggests that the KNN model faced difficulties in 

correctly generalizing the failure patterns, compromising its ability 

to classify the failure modes accurately and reliably. 

In the experiment conducted with the SVM (Support Vector 

Machine) algorithm for classifying failure modes in images from 

the PCB database, the objective was to predict the “NOK” and 

“OK” classes. After training, the model achieved an impressive 

accuracy of 99% on the tested images, indicating no errors in 

classification and prediction. Figure 14 corroborates these results, 

showing that the learning curve remained stable, both in the 

training and testing data. This stability throughout the classification 

process confirms the high effectiveness of the SVM, evidencing its 

robust generalization capacity and accuracy. The high performance 

of the SVM model suggests that it is highly suitable for 

implementation in a real production environment, where reliability 

in fault detection is crucial for the quality of the final product. 

Furthermore, these results highlight the potential of the SVM as a 

viable and efficient solution to classification challenges in 

industrial systems, making it a recommended choice for 

applications that require accuracy and consistency in visual data 

analysis. 
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