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Induction motors (IM) are crucial in industrial systems, and fault diagnosis reliably and 

effectively is of importance for maintaining efficiency. The detection of a broken rotor 

bar(RBB) is one of the most challenging tasks in condition monitoring due to the complexity 

of fault features in motor current signals. This plans overcome by developing a hybrid 

diagnostic framework to enhance fault detection accuracy. The proposed approach fuses a 

hybrid spectral analysis technique that integrates the Fast Fourier Transform with an 

autoregressive moving average model estimated using Burg's method. This hybrid of FFT-

ARMA-Burg enhances PSD representation. We employ biogeography-based optimization 

to optimally tune the parameters of the ARMA-Burg model for a better representation of 

fault-specific features. Further, this paper proposes an LSTM neural network that refines 

BBO-optimized parameters to improve fault frequency sensitivity. Experimental 

verification will demonstrate that the hybrid FFT-ARMA-Burg framework, combined with 

LSTM-enhanced BBO optimization, outperforms traditional motor current signature 

analysis (MCSA) and standalone ARMA-based methods in detecting broken rotor bars in 

squirrel cage induction motors. These findings confirm that the proposed methodology 

enhances broken rotor bar detection and supports predictive maintenance for improved 

reliability and efficiency in induction motors.  
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I. INTRODUCTION 

The diagnosis of induction motor faults is necessary to 

ensure operational efficiency and prevent sudden interruptions in 

industrial systems. Of the common faults, broken rotor bars are one 

of the most challenging to diagnose because of the low 

distinctiveness and complexity of fault-specific characteristics, 

which are often masked by noise within the motor current signals 

[1].  

Traditional Motor Current Signature Analysis (MCSA) has 

been the widely used method for condition monitoring and fault 

detection, due to its non-intrusive nature and simplicity [1-3]. 

However, these approaches are subject to serious limitations while 

dealing with nonlinear systems, variable load conditions, and noisy 

environments, in which fault-specific features are easily masked 

[4]. 

The challenges faced in these areas have been overcome by 

different improvements in fault diagnosis techniques. In addition, 

signal processing techniques like the Fast Fourier Transform (FFT) 

and AutoRegressive Moving Average (ARMA) models have also 

been used to improve the fault detection as noted in [5]. The FFT 

is also a non-parametric method, which is widely used since it is 

efficient in the conversion of signals from the time domain to the 

spectral domain. However, its fixed resolution restricts it from 

detecting weak or short-lived faults [6]. 

The ARMA model is well known for its ability to analyze 

complex frequency patterns and pick out dominant frequency 

components, which makes it a dependable choice for detecting 

faults in induction machines. However, its fixed resolution can 

make it less effective when it comes to spotting weak or short-lived 

faults [7]. 

On the other hand, ARMA models, mostly estimated by 

Burg's method, provide a compact and exact parametric 

representation of the signal characteristics, which is why they are 

well suited for general signal analysis [8]. 
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Hybrid schemes combining signal-based approaches with 

other methodologies have also been explored, for example, the 

combination of MCSA with vibration analysis has shown better 

reliability in fault detection[2-9]. However, most of these 

techniques depend on multi-sensor configurations that enhance the 

complexity and cost of the system. While FFT and ARMA-Burg 

each have individual limitations, these are partially addressed when 

the two methods are combined in a hybrid framework. FFT offers 

efficient global spectral analysis, but its fixed resolution limits its 

ability to detect weak or transient fault signatures [6]. ARMA-

Burg, on the other hand, stands out for its ability to deliver precise 

and compact PSD estimations while also helping to filter out noise 

[6], [7]. That said, even when combined with other methods, 

there’s still room for improvement to boost its accuracy and make 

it more reliable in the ever-changing conditions of industrial 

environments [5], [10]. R. Muñoz [7] highlighted how effective 

ARMA-Burg can be for PSD estimation but also noted its struggles 

with noisy data and fluctuating operating conditions. To overcome 

these disadvantages, the current study proposes a new hybrid 

diagnostic framework by fusing FFT and ARMA-Burg modeling 

with Biogeography-Based Optimization (BBO) and Long Short-

Term Memory (LSTM) networks.  

The inspiration from the migration patterns of species 

optimizes the parameters of ARMA-Burg via BBO to guarantee 

better noise immunity and improve the overall diagnostic 

performance [11-13].This optimization method has shown to be 

highly effective in fine-tuning complex parametric models. Created 

by Simon in 2008 [11], BBO is known for its simple yet adaptable 

design and its impressive ability to conduct thorough global 

searches. These qualities make it especially effective for enhancing 

parameter estimation in noisy and constantly changing 

environments[12]. In addition, the proposed model incorporates an 

LSTM network, which enhances its sensitivity to fault-specific 

features, ensuring more accurate and reliable fault detection. Since 

it is a member of RNN, and taking advantage of that method's 

ability to learn dependencies over long ranges, combined with 

temporal tendencies, make the LSTM very suitable in analysis of 

noisy condition-based motor current signals[14]. Contrary to the 

traditional methods based on single signal processing, the proposed 

framework exploits LSTM to extract the fault-sensitive features 

that improve diagnostic reliability in nonlinear and dynamic 

environments [12], [15].  

To the best of our knowledge, this is the first time that FFT, 

ARMA-Burg, BBO, and LSTM have been integrated within a 

single framework applied to fault detection of induction motors. 

The new approach experimentally assures better accuracy and 

reliability in fault detection than the traditional methods. It will 

contribute to providing an effective solution for predictive 

maintenance along with operational efficiency of industrial 

systems. 

 

II. FAULT DIAGNOSIS OF BRB IN IM 

Broken rotor bars in induction motors are one of the most 

serious faults in industrial systems, which significantly affects the 

performance, efficiency, and reliability of the system. Such faults 

cause distortion in the electromagnetic field inside the motor, and 

the anomalies in the motor current signals are usually very subtle 

and masked by noise [1]. More specifically, broken rotor bars cause 

irregularities in the magnetic air-gap field, which in turn produces 

sideband harmonic components in the current spectrum around the 

fundamental frequency. This behavior can be mathematically 

described as [1],[14]: 

 

      1 2bb sf ks f      ,          1,2,3,...,k                (1) 

 

Where 
sf  is the fundamental frequency (Hz) and s is the slip. 

Among these, the first-order sidebands  . . 1e g k   are the most 

important in fault detection. The left sideband  1 2 ss f is due to 

electrical or magnetic rotor asymmetries that result from broken 

rotor bars. On the other hand, the right sideband  1 2 ss f  is 

related to the speed ripple or rotor variations.Traditional diagnostic 

methods, like MCSA, are efficient in their performances but poor 

under dynamic and noisy environments and hence in need of 

adaptive solutions [16]. Advanced hybrid frameworks integrate the 

use of FFT for spectral modeling, ARMA-Burg for parametric 

modeling, BBO for parameter optimization, and LSTM networks 

aimed at increasing the diagnostic accuracy. Real-time accurate 

fault detection with a great increase in operational reliability and 

predictive maintenance of induction motors is attained by such 

integration. 

 

III. SPECTRAL TECHNIQUES 

III.1 FFT ANALYSIS 

FFT analysis, therefore, is one of the important tools for 

spectral representation, as it allows efficient decomposition of 

signals into their frequency components for the identification of 

dominant features. The major strengths of FFT are its 

computational efficiency and suitability for stationary signals. 

However, FFT suffers from inferior resolution for closely spaced 

frequencies and dynamic signal variations, which may pose a 

serious challenge in detecting subtle faults like broken rotor bars in 

noisy environments [5,6]. 

 

III.2 ARMA MODEL 

Many processes can be well approximated by a linear 

rational model. The AutoRegressive Moving Average model, or 

ARMA(p, q), gives a generalized presentation of time-series data. 

It is defined by the following recurrence equation and it captures 

both the autoregressive (AR) and moving average (MA) 

components to accurately describe the dynamics of a process [7,8]:  

1 0

( ) ( ) ( )
p q

k k

k k

x n a x n k b e n k
 

                            (2) 

 

 Where the a
k

 and b
k  are the coefficients of the AR and MA 

parts, respectively, and where ( )e n is a centered white noise, 

Gaussian, mean zero and 2

e  is variance. The number of the 

parameters p and q are known as the model orders. The transfer 

function is given by the expression[9]: 
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The roots of ( )B z are known as the system zeros, while the roots 

of ( )A z  are known as the system poles of the ARMA (p, q) 

process. 

  The spectral power density (PSD) of the ARMA (p, q) process is 

expressed as follows : 
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BURG ALGORITHM IN CONVENTIONAL ESTIMATION 

TECHNIQUES 

The Burg algorithm is an efficient recursive method and has 

widely been used for autoregressive parameter estimation in signal 

processing. Known to give the minimum of both forward and 

backward prediction errors (
f

pe ,
b

pe ) . Below are the forward 

prediction error and backward prediction error: 

 
1

( ) ( ) ( )
p

f

p p

i

e t x t a i x t i


   ,      1,...,t p N        (5) 

 

1,...,t p N                                    (6) 

 

The algorithm guarantees model stability without the need 

for computing autocorrelation matrices, which makes it 

computationally efficient. Although it was originally developed for 

AR models, the Burg method has been adapted in combination with 

moving average (MA) components in order to improve the 

estimation of parameters in ARMA models. This adaptation 

enhances the capability of the algorithm to capture the complex 

features of signals, especially in dynamic and noisy environments, 

which makes it suitable for applications such as fault diagnosis in 

industrial systems [8,9]. 

 

IV. OPTIMIZATION TECHNIQUES 

IV.1 BIOGEOGRAPHY-BASED OPTIMIZATION (BBO) 

A. INTRODUCTION 

Biogeography-Based Optimization (BBO) is a 

metaheuristic algorithm based on the biogeography itself, the 

studies that have sought to appeal to natural phenomena in defining 

the concepts of species distribution and migration across habitats. 

Introduced initially by MacArthur and Wilson in 1967 [13], it was 

further developed by Simon in 2008 [11]. In this sense, it would 

treat habitats as possible solutions by which possibility of 

iteratively improving those solutions comes from two main 

processes: migration and mutation. Its effectiveness lies in the 

maintenance of a trade-off between exploration and exploitation 

which is achieved through dynamic adjustment in terms of 

immigration (λ) and emigration (μ) rates. This feature helps in 

avoiding early convergence on suboptimal solutions and ensures 

thorough exploration of the solution space [11,12]. 

 

B. APPLICATIONS OF BBO IN ARMA PARAMETER 

OPTIMIZATION 

BBO offers distinct advantages over methods like Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), and 

Differential Evolution (DE) in ARMA model parameter 

optimization[11],[17].  

BBO will be able to realize improved information sharing through 

a migration operator for effective exploration in diversified 

solution space with preservation of high-quality solutions[11,13]. 

Innovation and refinement can be balanced by tuning the 

immigration and emigration processes for fast convergence 

towards the optimal solution. The mutation step prevents the 

algorithm from getting trapped in suboptimal solutions while 

simultaneously ensuring it is fast and accurate enough for ARMA 

parameter estimation[11], [12], [17]. 

Mutation is a probabilistic operator used to modify one or 

more Suitability Index Variables (SIVs) of a randomly selected 

solution based on its probability of existence Pi the probability of 

mutation mi is fixed according to the probability of the solution 

given by the equation (7)[11]:  

                                          
max

max

1 i

i

P
m m

P

 
  

 

                            (7) 

 

Where  mi  the mutation rate for habitat i, mmax the maximum rate 

of mutation. Pmax the maximum probability of existence. 

In spectral analysis for fault detection, the robustness of 

BBO to the challenges of non-convex optimization is invaluable in 

such applications as engine fault diagnosis. BBO leverages the 

concept of habitats-each representing potential solutions assessed 

through a Habitat Suitability Index-to optimize performance, 

through precise modeling of spectral characteristics. The 

immigration and emigration rates, determined by the count of 

species in each habitat, enable efficient exploration and 

exploitation of the solution space, making BBO an effective tool 

for signal processing tasks[18]. 

The immigration (λ) and emigration (μ) rates for a habitat 

are determined by the number of species (S), are given by:  

 

max

1S

S
I

S


 
  

 
                                       (8) 

 

max

1S

S
E

S


 
  

 
                                      (9) 

 

Where I is the maximum immigration rate, E is the maximum 

emigration rate and Smax is the maximum number of species on the 

island. 

 

 
Figure 1:Linear Migration Model – Species (S), Emigration (μ), 

and Immigration (λ). 

Source: [18]. 

The two basic operators that govern how BBO works are 

migration and mutation. In addition, an elitism strategy is adopted 

in the BBO algorithm, in order to keep the best solution in the new 

population. 

The BBO algorithm framework is illustrated in Algorithm as [11]: 

Algorithm :                BBO algorithm 

 
Initialize the BBO parameters: 
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Randomly generate a set of initial solutions (islands) 

while halting criterion is not satisfied, do 

Evaluate the fitness (HSI) of each solution 

Calculate the number of species S, the immigration 

rate λ and emigration μ for each solution. 

Migration Operator: 

for i = 1 to N do 

Use λi to decide, in a probabilistic way, to immigrate 

to   Xi 

   If   rand (0, 1) < λi then 

         for  j = 1 to N do 

 Select the emigration island  Xj with a probability 

to μj 

 if   rand (0, 1) < μj then 

     Replace a Suitability Index Variable (SIV) 

chosen randomly in   Xi by the corresponding 

variable in   Xj 

End if 

End for 

End if 

End for 

Mutation Operator: 

Mutate the individuals at the mutation rate given by 

the equation (7). 

Replacement of the population by descendants 

Implement elitism 

End while 

Return the best solution found 

 
IV.2 MACHINE LEARNING: INTEGRATING LSTM 

NETWORKS INTO DIAGNOSTIC FRAMEWORKS 

LSTM (Long short-term memory) networks are type of 

RNN (recurrent neural network) that are specialized in identifying 

long-term dependencies and patterns in time series. LSTMs have 

special mechanisms known as these are called a forgetting gate 

(decides what information to forget) and relearning gate (decides 

what to store) gates, which set these gates to 1 or 0. This allows 

them to effectively deal with complex, dynamic and noisy data 

[19]. 
 

 
Figure 2: Long Short-Term Memory (LSTM) Neural Networks. 

Source: towardsdatascience.com. 

 

LSTMs bring a noticeable improvement in fault detection 

accuracy when used in diagnostic systems. They analyze motor 

current signals to uncover subtle fault patterns, even when these 

patterns are hidden by noise[12], [15]. The combination of ARMA-

Burg modeling with Biogeography-Based Optimization (BBO) 

greatly enhances the precision and sensitivity of parameter 

estimation using Long Short-Term Memory networks (LSTMs) to 

give more clear and reliable representations of faults in power 

spectral density (PSD) analysis. Moreover, their ability to adapt to 

changing operating conditions ensures a stable performance under 

a wide range of fault conditions [14], [15]. 

This approach combines the ability of LSTMs to analyze 

time-series data with the spectral and parametric strengths of FFT 

and ARMA-Burg. Together, these methods create a reliable system 

for identifying broken rotor bar faults in induction motors. By 

integrating advanced techniques from signal processing, 

optimization, and machine learning, this solution raises the bar for 

accurate and dependable fault detection. 

By combining the ability of LSTMs to analyze time-based 

data with the spectral and parametric strengths of FFT and ARMA-

Burg, this approach offers a complete and effective solution for 

identifying broken rotor bar faults in induction motors. This 

framework combines advanced signal processing, optimization, 

and machine learning techniques, offering significant 

improvements in fault diagnosis. 

 

V. METHODOLOGY 

In this study, we present and demonstrate the validity and 

effectiveness of a new method for identifying broken rotor bars in 

induction motors. By integrating motor current signature analysis 

(MCSA) with advanced techniques in signal processing, 

optimization and machine learning, the method improves the 

accuracy and reliability of fault detection, even under diverse 

operating conditions. 

The motor current signals were collected from a 2-pole, 2.5 

KW squirrel-cage induction motor with a rated voltage of 400/230 

V, operating under a torque load of 6 Nm. The motor parameters, 

including stator resistance (Rs = 7.8 Ω), stator inductance (Ls = 

0.59 H), and other parameters values, are detailed in Table 1. To 

simulate real-world conditions, the signals were sampled at 1kHz 

and subjected to additive noise with a signal-to-noise ratio (SNR) 

of 60 dB. Both healthy and faulty conditions, including one and 

two broken rotor bars, were emulated. 

MCSA was employed as the primary diagnostic technique 

to extract fault-related features from motor current signals. 

Preprocessed signals were segmented into smaller windows, 

enabling detailed analysis. Spectral analysis using the FFT 

identified dominant frequency components, while the ARMA 

model, estimated via Burg’s method, captured fine-grained spectral 

details by modeling the power spectral density (PSD). The hybrid 

FFT-ARMA-Burg approach providing a complete and detailed 

spectral representation. 

The ARMA-Burg parameters were optimized using BBO 

with objective function incorporated the Mean Squared Error 

(MSE) between the PSD of the faulty signal and a reference PSD, 

emphasizing accurate fault-specific feature representation. The 

MSE is calculated as [20]: 

 

2

1 1

N N

K K k

K K

y y e

MSE
N N



 

 
 

 
 
 

                            (9) 

Where 
Ky   is the actual signal,  Ky



 is its estimate signal and   N 

is the length of the data. 

BBO’s migration and mutation mechanisms ensured robust 

parameter optimization, addressing non-linearity and noise in the 

signal. To further enhance diagnostic accuracy, LSTM neural 

networks were integrated into the framework. LSTM networks, 

designed to process sequential data, were trained on windowed 
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motor current signals and their corresponding fault labels. This 

approach helped the model detect time-based patterns and uncover 

subtle fault features that traditional methods often failed to identify. 

Improving the LSTM greatly enhanced fault detection sensitivity, 

especially in noisy environments, by fine-tuning parameters 

optimized with BBO. 

The method was compared to traditional MCSA and 

spectral analysis techniques to evaluate its performance. Tests were 

done under different noise levels, fault severities, and working 

conditions to ensure its reliability. By combining MCSA, FFT-

ARMA-Burg modeling, BBO optimization, and LSTM 

improvements, it showed significant gains in accuracy and 

dependability for fault detection. This makes it a reliable tool for 

maintaining industrial systems. 

 

VI. SIMULATIONS RESULTS AND DISCUSSIONS 

VI.1 CHARACTERISTICS OF INDUCTION MOTORS 

We performed the simulation in MATLAB 2018, using the 

motor current signals acquired under different fault conditions.The 

study used a 2.5 kW, 400/230 V, two-pole squirrel-cage induction 

motor with a torque of 6 Nm. The motor was connected to a stator 

fault simulator, whose parameters are defined in Table 1.  

 

Table 1: Parameters of the Simulated Induction Motor. 

Parameter Value Description 

Rs 7.828 Ω Resistance of a stator phase 

Ls 0.589 H Inductance of a stator phase 

Lr 4.6×10−6 H Equivalent rotor inductance 

Lm 4.64×10−4 H 
Mutual inductance between stator 

and rotor 

Re 7.2×10−4 Ω Resistance of a short-circuit ring 

Le 10−7 H Inductance of a short-circuit ring 

Nr 16 Number of rotor bars 

a (P * 2π) / Nr 
Angle between two adjacent rotor 

bars 

Rb0 0.0015 Ω Resistance of a rotor bar 

Rr 

(2*Re/Nr) + 

(2*Rb11* 

(1-cos(a))) 

Equivalent rotor resistance 

Source: Authors,(2025). 

 

We then analyzed the motor under healthy and faulty 

conditions, including scenarios with one broken and two broken 

rotor bars.Noise with an SNR of 60 dB was added to the motor 

current signals to simulate real-world conditions.  

 
Figure 3: Simulated Rotor Bar Current, Stator Current ,Rotor 

Speed ,and Torque of Healthy and Faulty IM. 

Source:Authors,(2025). 

 

Figure 3 presents the results of the simulation for a healthy 

and a faulty induction motor by focusing on some key parameters, 

namely rotor bar current, stator current, rotor speed, and 

electromagnetic torque, for different fault conditions: one and two 

broken rotor bars. 

For the healthy motor, all parameters are stable and smooth. 

During the first operating instants, the rotor speed grows from 0 to 

around 3000 RPM during the interval between 0 to 0.5 s, becoming 

a steady value. 

At t =0.5sec, the application of resistive torque of 6Nm for 

an instant slows the motor shaft, and speed falls a little.  

In contrast, faulty motors exhibit noticeable oscillations and 

distortions in all observed parameters. Large fluctuations of the 

rotor speed are observed around the steady-state value. Rotor bar 

and stator currents, which remain steady in the healthy motor, now 

become irregular and noisy due to rotor imbalance. 

Regarding electromagnetic torque, the healthy motor settles 

with a value close to 6 Nm after load is applied. However, fault-

induced oscillations increase in torque with the severity of the fault, 

showing obviously higher instability as the status deteriorates from 

one to two broken rotor bars. 

This figure reveals the sensitivity of motor dynamics to 

mechanical imbalances and the serious impact of rotor faults and 

load application on motor performance. It justifies the effectiveness 

of the parameters for fault detection and analysis in induction 

motors.  

 

VI.2 HYBRID FAULT DETECTION USING FFT, ARMA-

BURG, BBO ALGORITHM, AND LSTM MODELS 

A. HYBRIDIZATION OF ARMA-BURG AND FFT 

 

The ARMA-Burg model requires careful selection of the 

order to detect the frequencies associated with the error, which is 

achieved by applying FFT to identify spectral changes. FFT 

emphasizes the frequencies caused by the error, while ARMA-

Burg filters the power spectral density through smoothing and 

noise reduction. This hybrid approach effectively enhances the 

visibility of the error, as shown in Figure 4 and Figure 5. 
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Figure 4: Hybrid FFT and ARMA-Burg Spectrum Analysis for 

One Broken Rotor Bars. 

Source: Authors,(2025). 

 

 
Figure 5: Hybrid FFT and ARMA-Burg Spectrum Analysis for 

Two Broken Rotor Bars. 

Source: Authors,(2025). 

 

The above figures present the frequency spectra for both 

healthy and faulty conditions, obtained through FFT and ARMA-

Burg, respectively. Under the condition of a healthy signal, FFT 

has a dominant peak at 50 Hz; however, there is also noise and 

some irregular components, while ARMA-Burg smooths the 

spectrum and reduces the noise floor, hence improving clarity. In 

the one broken bar case, FFT reveals sidebands at approximately 

54.4 Hz and 45.6 Hz, although finer details are obscured by noise; 

ARMA-Burg enhances these sidebands, and fault frequencies 

become more evident. For two broken bars, FFT presents increased 

sideband amplitudes related to fault severity, ARMA-Burg further 

sharpens the sidebands, showing clearly the increased fault 

severity.  

 

B. ARMA-Burg+FFT with BBO algorithm+LSTM 

In order to optimize the parameters of ARMA-Burg, 

minimize MSE by the BBO algorithm and thus, enhance spectral 

clarity to realize fault frequency detection especially when noise is 

strong. the parameters of BBO are shown in Table 2. 

The LSTM network integrated with the ARMA-Burg+FFT model 

optimized by BBO improves the quality of error classification. The 

optimal features extracted from the MSE minimization process are 

used in the spectrum estimation using BBO as input to train the 

LSTM network. The detailed LSTM parameters are shown in the 

table 3. 

Table 2: BBO Algorithm Parameters. 

Parameter Description Value 

Population Size Number of candidate solutions 50 

Max 

Generations 
Maximum number of iterations 100 

Mutation Rate Probability of mutation 0.01 

Migration Rate 
Rate of exchanging features 

between solutions 
0.2 

Elitism Count 
Number of elite solutions 

preserved 
2 

Fitness 

Function 

Objective function (MSE 

minimization) 

Mean Squared 

Error 

Model 

Parameters 
ARMA model order (p, q) p = 40, q = 39 

Source: Authors,(2025). 

 

Table 3: LSTM Network Parameters. 

Parameter Description 
Value from Your 

Code 

Input Size 
Number of input 

features 

102 (signal + fault 

features) 

Hidden Units 
Number of LSTM units 

in the layer 
64 

Hidden Layers 
Number of LSTM 

layers 
1 

Output Size 
Number of output 

parameters 
2 (p, q) 

Fully Connected 

Layer Units 

Units in the fully 

connected layer 
32 

Optimizer 
Optimization algorithm 

for training 
Adam 

Batch Size 
Number of samples per 

training batch 
16 

Epochs 
Number of training 

iterations 
50 

Loss Function 
Function to minimize 

during training 

Regression Loss 

(regressionLayer) 

Source: Authors,(2025). 

 

As shown in Figure 6, the LSTM achieves a steady decrease 

in RMSE and Loss over 50 epochs and 150 iterations, indicating 

effective learning and optimization. The results confirm the 

network's capability to predict ARMA-Burg parameters accurately, 

ensuring robust performance. 

 

 
Figure 6. Training Progress of LSTM Network. 

Source: Authors,(2025). 
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Figure 7: PSD Comparison of ARMA-Burg, ARMA-Burg+BBO, 

and ARMA-Burg+BBO+LSTM in Healthy State. 

Source: Authors,(2025). 

 

 
(a) 

 
(b) 

Figure 8(a, b): PSD Comparison of ARMA-Burg, ARMA-

Burg+BBO, and ARMA-Burg+BBO+LSTM for One Broken Bar 

(1BRB) and Two Broken Bars (2BRB) in the Faulty State. 

Source: Authors,(2025). 

 

 
Figure 9: Mean Squared Error (MSE) Across generations. 

Source: Authors,(2025). 

Results shown in Figure 7 for healthy state PSD 

comparison, Figure 8 (a) for faulty state PSD comparison of 1BRB 

and Figure 8 (b) for faulty state PSD comparison of 2BRB ,show 

the effectiveness of optimization methods in ARMA-Burg 

modeling under various operating conditions. In Figure 7, the 

ARMA-Burg+BBO+LSTM approach achieves the most accurate 

PSD estimation for the healthy state, closely aligning with the 

reference signal at the main frequency of 50 Hz. The ARMA-

Burg+BBO method shows a moderate improvement over the 

default ARMA-Burg model, which exhibits the largest deviations 

from the true PSD. 

In the faulty state, as illustrated in Figure 8(a) (1BRB) and 

Figure 8(b) (2BRB), the PSDs clearly highlight fault-induced 

sideband frequencies around 45.6 Hz and 54.4 Hz, caused by the 

slip factor. The increase in the number of broken bars (BRB) is 

reflected in the amplitude increase of these sideband frequencies. 

In the 1BRB case, it is shown that the fault-related components are 

captured effectively along the minimal error by ARMA-

Burg+BBO+LSTM, ARMA-Burg+BBO indicates the moderate 

accuracy while ARMA-Burg has suffered in representing the 

spectral peaks with accuracy. The other simulated case of Figure 

8(b) increases fault complexity for the presence of stronger 

sideband components at 45.6 Hz and 54.4 Hz with its harmonics in 

2BRB case. ARMA-Burg+BBO+LSTM demonstrates superior 

accuracy in estimating the PSD, closely aligning with the true 

spectral components. In contrast, ARMA-Burg and ARMA-

Burg+BBO produce higher and less precise estimations, 

particularly at critical frequencies such as the main frequency (50 

Hz) and fault-induced sidebands (45.6 Hz and 54.4 Hz) . 

The MSE variations across generations are presented in 

Figure 9, providing further confirmation of the performance 

differences among the methods. The subplot corresponding to the 

healthy state shows that the starting MSE was lower for all 

methods, indicating spectral structure with more simplicity. In the 

subplot at the bottom representing a faulty state, starting values of 

MSE are higher in the case of 1BRB and still higher for 2BRB due 

to increased spectral complexity introduced by additional fault-

related components. In fact, the ARMA-Burg+BBO+LSTM 

scheme shows the fastest convergence in both considered faulty 

cases, besides yielding the minimum MSE, which further 

corroborates the robustness of this modeling approach against 

complex fault-induced spectral behavior. These results confirm 

that ARMA-Burg+BBO+LSTM has indeed been the most accurate 

and reliable for both healthy and faulty conditions up to now, doing 

much better under complicated conditions such as 2BRB. 

 

VII CONCLUSION 

This paper proposes a robust framework for ARMA-Burg 

modeling, FFT preprocessing, Biogeography-Based Optimization 

(BBO), and Long Short-Term Memory (LSTM) network 

combinations to diagnose broken rotor bars in induction motors. 

The main emphasis of our study has been on optimizing the 

parameters of the ARMA-Burg model to enhance spectral clarity 

in accurate rotor fault detection, particularly under noisy 

conditions.  

At first, FFT provided a preliminary spectral analysis, and 

BBO minimized MSE for the power spectral density estimation 

refinement. Later, LSTM improved the feature representation for 

the fault, capturing temporal dependencies to enable the reliable 

classification of faults. The results reflected a clear improvement 

in spectral clarity-some with a reduced noise background and 

highly distinct peaks of fault frequency in the PSD comparisons.  
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The proposed BBO and LSTM approach presented the best 

Broken Rotor Bars fault detection compared to other approaches in 

terms of progressive reduction of MSEs and showing clear 

sidebands in faulty states. Such results confirm that the approach 

would work well in properly recognizing and classifying states on 

induction motors, whether these are healthy or in faulty conditions, 

such as having one or two broken rotor bars. 

This hybrid methodology finally provides an effective tool 

for signal analysis and fault diagnosis, enhancing accuracy by 

reducing computational errors and offering practical applicability 

in predictive maintenance systems for rotating machinery. Further 

research work may extend the framework to other types of 

machinery faults and further refine the models for real-time 

applications. 
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