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Accurate prediction of a lithium-ion battery's remaining useful life (RUL) is essential for 

effectively managing and maintaining electric vehicles (EVs). By anticipating battery health 

and potential failures, we can optimize performance, enhance safety, and prevent costly 

breakdowns. Based on a supervised machine-learning regression approach, this work 

presents four different regression models like Gradient Boosting Regressor, K-Nearest 

Neighbor Regressor, Bagging Regressor, and Extra Tree Regressor models to forecast the 

li-ion battery life for electric vehicles. Using actual battery data from Hawaii National 

Energy Institute (HNEI), four algorithms were used to forecast remaining useful life (RUL) 

of batteries. These algorithms were implemented using Python in Google Co-laboratory. 

The accuracy of each model, Performance error indices including Mean Square Error 

(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-squared, and 

computational time were calculated. Findings show that Bagging Regressor model 

outperforms the other three models in terms of RUL prediction. The Bagging Regressor 

model demonstrated its superiority with better 𝑅2 values of 0.999 and lower MSE of 14.307, 

RMSE of 3.782, and MAE of 2.099. The proposed model enhances EV energy management 

through precise RUL forecasting. 
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I. INTRODUCTION 

 

Electric vehicles (EVs) have become more commonplace 

since they were first developed decades ago as a means of mobility. 

EVs provide unparalleled benefits over gas-powered cars, 

including rapid acceleration, virtually silent operation, and little 

emissions. With the growing use of electric cars, portable consumer 

electronics, and grid-tied energy storage systems for load balancing 

and energy storage technologies are becoming more and more 

common [1], [2]. Currently, the main energy source for EV’s is 

lithium-ion batteries. Lithium-ion battery usage is pervasive in 

several industrial applications. Decreased performance is one of the 

major consequences that might result from a battery failing [3]. The 

complex combinations of materials construct lithium-ion battery 

packs used in EVs provide the energy and power required for 

operation. 

Remaining useful life (RUL) is a strategic tool that helps 

determine how much capacity a system can supply at any given 

moment before it fails or is decommissioned. It aids professionals 

in design and administration of systems to prevent unforeseen 

malfunctions, which can be expensive to maintain [4]. It is a 

method that assesses if a project's mission goals are realistic and 

aids in the real-time diagnosis, prognosis, and fault detection of 

issues while taking uncertainties into account. PHM dependability 

and safety of battery systems depend on accurate RUL prediction.  

A battery's reserve capacity RUL is the maximum number of cycles 

through which it may be charged and discharged before it reaches 

end of life (EOL). Where EOL typically denotes the point at which 
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a battery's capacity drops to less than 70–80% of its stated capacity. 

Remaining Useful Life  prediction  calculated as, 
 

RUL=TEOL− TCU   (1) 
 

TEOL stands for the amount of time a battery may be used. 

Battery current utilisation time is abbreviated as TCU. The first 

equation considers calendar ageing in addition to cycle ageing. 

Most studies define the RUL purely in terms of cycle aging. 

Another definition that is applicable to RUL is as follows: 
 

RUL= 
𝑁𝑖−𝑁𝐸𝑂𝐿

𝑁𝑛𝑜𝑚𝑖𝑛𝑎𝑙−𝑁𝐸𝑂𝐿
    (2) 

 

where Ni is present capacity, 𝑁𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal capacity and  

𝑁𝐸𝑂𝐿  end-of-life capacity respectively. 

 

As we stand at the intersection of technological innovation 

and sustainable energy practices, the incorporation of machine 

learning algorithms into LIB RUL cycle prediction seems like a 

revolutionary step towards a future where energy storage systems 

are not only powerful but also environmentally conscious and 

commercially viable. "Consequently, numerous approaches to 

RUL prediction have been developed by academics, which can be 

broadly categorized into two categories: model-based and data-

driven. Recent advancements and successes in machine learning 

(ML) approaches have led to increased interest in the state 

estimation of LIB incorporating RUL." [5].   

 

 
Figure 1: RUL Prediction Classification. 

Source: Authors, (2025). 

The degradation pattern of batteries might be well 

described by model-based prediction techniques. However, for 

precise prediction and deterioration modelling, a lot of variables 

and intricate computations are frequently needed. Because of this, 

the model is unsuitable for real-time prediction and practical 

implementation. There are two main types of model-based 

predictions: empirical and physical. Use of an empirical model for 

RUL prediction is employed by a number of battery degrading 

properties. To represent the degradation behaviour, empirical 

approaches utilise various regression models. To anticipate the 

degradation trend, they use empirical formulas. In [6], the authors 

demonstrated the efficacy of a logarithmic model-based RUL 

prediction framework compared to more conventional empirical 

models. An explanation based on physical and electrochemical 

processes within the battery is the basis of the physical model [7]. 

The physics model for RUL prediction is built using concepts of 

electrode porosity and reaction kinetics.  

Data-driven techniques may be roughly categorized as 

machine learning (ML)-based and statistically-based. Artificial 

intelligence (ML) techniques employ external battery factors to 

forecast the health of the battery, making them simpler to 

implement and frequently reducing the need for precise battery 

modelling and domain-specific expertise. [8] Usually, the ML 

algorithms monitor changes in internal resistance, impedance, 

voltage, capacity, and computational efficiency to determine the 

deterioration trend for RUL prediction. The model of capacity 

deterioration is derived from previous data is Statistical modelling 

may be used with accuracy and ease. [9] The statistical techniques 

used for predicting Remaining Useful Life (RUL) include 

Autoregressive approach and Grey Prediction Model. This study 

made use of bagging, extra-tree, K- nearest neighbor and gradient 

boosting regression models. Based on performance metrics, four 

models will be tested to estimate lithium-ion battery RUL capacity. 

There is an explanation of the four regression models' efficacies 

executed on HNEI battery data set. 

The following is the outline of the article. A survey of 

relevant literature is provided in Section 2, while Section 3 details 

methodology and four different ML regression techniques. In 

Section 4, we offer the results together with our assessment of 

them. Section 5 draws conclusions. 

 

II. LITERATURE REVIEW 

 

The growing number of electric vehicles has resulted in a 

significant problem for the infrastructure, electrical system, and 

charging station requirements. Electric vehicles often use LIBs, 

which are electrochemical systems that are dynamic, time-varying, 

and exhibit complex internal mechanics and nonlinear behaviour. 

The LIB's life and performance steadily decline with charge and 

discharge cycles. De-gradation of batteries can occur for a variety 

of causes, such as temperature fluctuations, mechanical stress, 

chemical reactions, and changes in physical processes. Predicting 

the battery's remaining lifespan also becomes a very difficult 

process as a result of deterioration. Still, in order to guarantee 

dependable performance of the battery management system, this is 

necessary. 

It will be helpful to compare performance of data-driven 

and physical modelling techniques with the same battery and 

operational parameters. Battery SOH and RUL prediction may be 

accomplished with an accurate model, ensuring the safety of using 

EV batteries [10]. Battery remaining useful life prediction and 

performance indices of ML algorithms were studied in [11] The 

obtained findings indicate that the random forest technique was 

more appropriate for accurate RUL prediction. The duration 

between the present observation and end of battery's life is defined 

by the manufacturer as Remaining Useful Life (RUL) [12]. In [13] 

employed a segmentation-type anomaly detection technique 

utilizing temperature and voltage measurements taken at several 

timesteps to determine how the Li+ battery's properties were 

changing. Therefore, to estimate the battery's RUL, the Extra Tree 

Regression (ETR) approach may be employed to extract important 

variables from temperature and voltage transitions, including 

variance, kurtosis, skewness, and voltage. In this [14], applied, and 

examined three machine learning models, including SVR and 

LSTM Network and also examined the impact of calendar aging on 

a battery's RUL. The purpose of these two sets of trials was to 

strengthen RUL prediction models by including calendar aging 

effects. This study used three regression models based on 
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supervised machine learning predict life span of LIB. [15] Models 

based on voltage-dependent per-cell data will be used to compare 

LR, BR, and RFR in estimating capacity of batteries. [16] paper 

discusses difficulties in estimating the battery life cycle using 

machine learning and outlines potential avenues for further study 

and improvement, including scalability, interpretability, and the 

integration of upcoming technologies. With a comprehensive 

introduction to BMSs and ML, this [17] study examines latest 

results on ML methods for SOC prediction. This paper highlights 

the common use of many techniques in predicting SOC and SOH, 

including support vector machines, fuzzy logic, k-nearest 

neighbors, genetic algorithms, and transfer learning. [18] RUL 

prediction of batteries, Gradient Boosting (GB) and Naive Bayes 

(NB) algorithms are recommended. The battery's performance 

parameter is maximized by doing an error analysis on the model. 

Selecting statistical metrics allows for a quantitative assessment of 

forecast results. 
 

III. METHODOLOGY 

III.1. METHODOLOGICAL FRAMEWORK 

Figure. 2 shows the basic Remaining useful life prediction 

methods based on machine learning for LIB. Most recently 

developed machine learning based prediction techniques are 

covered in next  

section.  

 
Figure 2: Framework of RUL prediction technique. 

Source: Authors, (2025). 

A typical machine learning approach for forecasting a battery's 

RUL is depicted in figure 2. Gathering data, extracting features, 

training models, and evaluating them are all part of it. 

Data Collection: The procedure starts by gathering data from the 

battery, including factors such as voltage, current, temperature, and 

capacity. 

Feature Extraction: Collected data is further processed to extract 

relevant features that will be utilized for training and testing the 

RUL prediction. 

Training Data: Used to train the RUL prediction algorithms. 

Testing Data: Evaluate the performance of  trained models. 

RUL Prediction Algorithms: GBR, KNN, BR and ETR are the 

ML algorithms used for prediction. 

Performance Error Indices: The performance of each RUL 

prediction algorithm is evaluated using error indices. These indices 

help determine how well each algorithm predicts the RUL of the 

battery. 
 

III.2. PROPOSED ALGORITHMS: 

III.2.1. Gradient Boosting Regressor (GBR): 

As an optimization technique, gradient descent trains 

successive models to minimize a loss function, such cross-entropy 

relative to its predecessor [19]. Combining several weak models 

into one strong predictive model is the goal of gradient boosting, 

an effective ensemble approach. The following figure shows the 

steps involved in training gradient-boosted trees to solve regression 

problems.  

 
Figure 3: Training of Gradient Boosting Regressor. 

Source: Authors, (2025). 

The set of ‘N’ trees is derived from the illustration. For 

Tree1's training, we utilize ‘y’ and feature matrix ‘X’. Predictions 

labelled �̂�1  are used to find the training set residual errors, 𝑟1.Next 

step is to train Tree2 using ‘X’ as feature matrix and labels from 

r1, residual errors of Tree1. We next determine residual 𝑟2 by use 

the expected results, �̂�1.  

We keep doing this until we've trained all 'N' trees in our 

ensemble. One of the most important parameters used by this 

strategy is shrinkage. The term "shrinking" describes the effect of 

multiplying the predictions of each ensemble tree by the learning 

rate, eta, which can take values between zero and one. There is a 

trade-off between eta and the number of estimators; a lower 

learning rate necessitates a higher number of estimators to preserve 

a certain model performance. The formula below gives the final 

forecast, after each tree has made a label prediction. 

 

y(p) = 𝑦1 + (H * 𝑟1) + (H * 𝑟2) + . + (H * 𝑟𝑛) (3) 

Algorithm: 

Step 1: Let's assume that the input and target, X and Y, consist of 

N samples each.  Main objective is to determine function f(x) that 

maps input characteristics X to target variables y. It represents the 

cumulative number of trees that have been reinforced. The 

difference between expected and observed values quantified by 

loss function. 

L(f) =∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁
𝑖=1                (4) 
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Step 2:  Minimize loss function L(f).  

𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐿(𝑓)  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁
𝑖=1  (5) 

Step 3: Gradient descent 

For ‘M’ stage gradient boosting gradient descent finds 

ℎ𝑚 = −𝜌𝑚𝑔𝑚 
 

                         𝑔𝑚 = − [
𝜕𝐿(𝑦𝑖,𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]                   (6) 

Step 4: Prediction 

The gradient Similarly for trees: 

𝑓𝑚(𝑥)  = 𝑓𝑚−1(𝑥) +

(𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝑚(𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝑚[∑ 𝐿(𝑦𝑖,𝑓𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)𝑁
𝑖=1 ](𝑥)      (7) 

The final solution is: 

𝑓𝑚 = 𝑓𝑚−1 − 𝜌𝑚𝑔𝑚  (8) 

III.2.2 K-Nearest Neighbor (kNN)  

It uses similarities between new data points and old data 

to determine their classification. It operates under assumption that 

similar data points are located close to each other in feature space. 

By storing all training data, KNN can efficiently assign new data 

points to the most appropriate category based on their proximity to 

known data points. Despite its popularity in the classification 

domain, KNN has a place in regression analysis as well. The core 

idea is to classify a testing point based on its nearest neighbors in 

feature space, where k is a given integer. This neighborhood is 

selected from a set of training points whose correct classifications 

are known. Due to its laziness as a learning algorithm, kNN only 

uses approximations at the local level to approximate functions, 

saving computation until when it is truly necessary [20]. The 

nearest training points (K(1), K(2),..., K(n)) in a neighborhood are 

weighted to provide an estimate of the answer (xt) for a testing 

point (xt) in a k-nearest neighbor regression. It is common practice 

to use a kernel function that takes into account the distance between 

each neighbor and the testing point to calculate their weight. 

 
Figure 4: Flow chart for KNN. 

Source: Authors, (2025). 

Let K = {k1, k2,..., kM} be a training data set with M training 

points and N features per training point. weighted Euclidean 

distance, represented as,  

 

KNN= d(Kt, Ki) =√∑ 𝑤𝑛(𝑘𝑡,𝑛 − 𝑘𝑖,𝑛)2𝑁
𝑛=1   (9) 

 

3.2.3. Extra Tree Regressor (ETR) 

Developed as an extension of the Random Forest (RF) 

model by Geurts et al., Extra Tree Regressor (ETR) [21] describes 

a considerable enhancement to ensemble learning. A collection of 

unpruned regression trees, each produced by a standard top-down 

algorithm, form the basis of the ETR method. This method uses a 

two-stage procedure for regression analysis, namely bootstrapping 

and bagging, which is different from the RF model. Whenever a 

tree is being trained in the ETR model, a deterministic splitting 

method is used. Although RF uses a selection technique to find the 

best split from a random set of attributes at each node (as shown in 

the image below), ETR picks the best split from these options by 

randomly picking a split point for every feature.  

Figure 5: Extra Tree Regressor. 

Source: Authors, (2025). 

Here is the mathematical representation: 

XETR = Argn, m min[Error(n,m)]  (10) 

The variable XETR indicates the split that was decided in 

the ETR method in this example. An attribute is represented by the 

letter ‘n’, while a randomly chosen feature split point is symbolized 

by the number ‘m’.  

The split's success in reducing errors is determined by the function 

Error (n, m). In order to reduce this mistake, the algorithm chooses 

a n and m value. Typically, the final forecast is computed as an 

average of the votes cast by each tree during the bagging step of 

the RF method. But the ETR method uses a broader set of unpruned 

trees in a comparable fashion. For a brief mathematical description 

of the output from the ETR model, see the equation below. 

YETR = 
1

𝑁
∑ 𝑇𝑖(𝑋)𝑁

𝑖=1   (11) 

The input feature vector is X, and the output is YETR. 
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3.2.4. Bagging regressor (br) 
 

Figure 6: Bagging Regressor Algorithm. 

Source: Authors, (2025). 

Ensemble learning is a method in supervised machine 

learning where many models are combined to create a more 

powerful single model. As an ensemble learning method, 

"bagging" or "bootstrap aggregating" entails training many base 

models concurrently on different subsets of training data [22]. 

Bootstrap sampling, which selects data points at random 

replacement, is used to create each subgroup. For the bagging 

classifier, majority voting is used to aggregate the all-base model's 

predictions to arrive at the final prediction. In order to get at a final 

prediction, regression models average the predictions from all of 

the base models, a process known as bagging regression. The 

Bagging Algorithm, as seen in Figure 6 below, consists of many 

phases. 

Training Data: Data is selected for training form available 

datasets. 

Boot Strap: Randomly chosen "n" subsets of the initial training 

data are selected with replacement in the bootstrap sampling 

method. While certain samples may appear more than once in the 

new subset while others may be excluded, this process guarantees 

that basic models are trained on variety subsets of data. It raises 

model’s accuracy and lowers the danger of overfitting. 

Model: Involves creating a separate subset of data for each base 

model, which is trained independently using a specific approach . 

Due to their potential lack of accuracy when used alone, these 

models are commonly known as "Weak learners." As the basic 

model does not utilize separate data subsets during training. 

Aggregation/Voting: The majority vote determines the anticipated 

class label in the bagging classifier for given instance. The class 

predicted by the model is the one with the majority of votes. 

Model Output: Bagging generates a final forecast for each 

instance by combining the predictions from all of the underlying 

models. Bagging regressor provides a potent way to boost model 

resilience and predictive performance. By using the collective 

knowledge of several base models, the Bagging regressor prevents 

overfitting, enhances generalization, and provides reliable 

predictions for a broad range of applications. 

IV. RESULTS AND DISCUSSION 

IV.1. DATA SET 

Fourteen NMC-LCO 18650 batteries, with a nominal 

capacity of 2.8 Ah each, make up the dataset utilised for forecasting 

the Remaining Useful Life. [23] The batteries were tested by the 

Hawaii Natural Energy Institute through over a thousand cycles at 

a temperature of 25°C.A 1.5 C discharge rate and a C/2 CC-CV 

charge rate were utilised in the tests. The information includes 

important statistics about voltage and current, which essential 

required for calculating the batteries' remaining useful life (RUL). 

 

 
Figure 7: Charging and Discharging of LIB’s.. 

Source: Authors, (2025). 

IV. MODEL VALIDATION 

Multiple techniques exist for assessing the efficacy of 

models. This study utilizes four statistical measures, namely MAE, 

MSE, RMSE, and R2, to evaluate performance of models. 

Evaluative metrics are shown in the following equations (12–15). 

 

MAE = ∑ (𝑥𝑖 − 𝑦𝑖)𝑛
𝑖=1    (12) 

 

MSE =∑
(𝑥𝑖−𝑦𝑖)2

𝑛

𝑛
𝑖=1    (13) 

 

RMSE = √∑
(𝑥𝑖−𝑦𝑖)2

𝑛

𝑛
𝑖=1    (14) 

 

R2 = 1-
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−�̿�𝑖)2𝑛
𝑖=1

   (15) 

Where 𝑥𝑖represents the predicted value,𝑦𝑖  represents the observed 

value, �̿�𝑖 is the mean observed value, and 𝑛 is the sample size. 

 

IV.3 ASSESSING THE SUGGESTED MODELS' 

EFFECTIVENESS 

 

We performed several necessary measures to make the dataset 

more amenable to examination and modelling. Data cleaning to 

remove errors, feature selection to provide useful information 

about battery behaviour, feature creation to add more insights, data 

normalisation to make sure all features are on same scale, 

categorical variable transformation to modellable format, data split 

into training and testing sets to evaluate model performance were 

all part of this project. 

There are 15,065 rows and 9 columns in dataset. Training 

uses 70% of the data, while testing uses the other 30%. By dividing 

dataset, model may be trained on a bigger dataset for training and 

tested on a smaller one. 
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Table 1: Performance Model Validation of RUL prediction using Machine Learning Algorithms. 
Algorithms MSE RMSE MAE R2 Time 

Gradient Boosting  53.941 7.344 4.837 0.976 0.722 

K Nearest Neighbor 57.061 13.109 9.721 0.988 0.820 

Bagging Regressor 14.307 3.782 2.099 0.999 0.124 

Extra Tree Regressor 30.763 5.546 2.523 0.997 0.138 

Source: Authors, (2025).  

  

 
Figure 8: Estimation results of the HNEI aging dataset. 

Source: Authors, (2024). 

 

 
Figure 9(a): RUL Actual Vs Predicted.  Figure 9(b):Training and validation loss. 

Source: Authors, (2025). 

 

The effectiveness of machine learning models, GBM, 

KNN, BR and ETR in forecasting battery RUL is compiled in 

Table 1. The efficiency of models was evaluated using metrics, 

including MAE, MSE, RMSE and R2 with its execution time. 

From the performance model validation Table 1 it 

indicates that bagging regressor model performs better than the 

other types, according to the data. 

With an R2 value of 0.999. BR model  has best prediction 

accuracy, surpassing GBR, KNN, and ETR, as shown by its lowest 

RMSE of 3.782. A MAE of 2.099 confirms that the BR model 

accurately estimates the target variable. 

The accuracy of the BR model's estimation of RUL for the 

HNEI technique is shown in Figure 8. The results demonstrate that, 

when applied to the HNEI aging dataset, the proposed BR model 

estimates RUL for a variety of performance error indices with 

robustness and accuracy. The proposed models demonstrated 

strong performance and increased forecast accuracy.  

The suggested BR technique has the potential to significantly 

increase a lithium-ion battery's RUL prediction accuracy. 

Figure 9(a) presents a clear comparison between the real 

Remaining Useful Life (RUL) values and the anticipated RUL 

values generated by our model for the most recent 100 test samples. 
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The x-axis depicts the indices of the most recent 100 test samples, 

providing a historical perspective on the prediction performance 

over time. Every data point on the diagram represents a singular 

test sample. The y-axis represents the RUL values, which measure 

the remaining useful life for each test sample.  

The actual Remaining Useful Life (RUL) line represents 

the genuine RUL values obtained from the test data. It acts as a 

standard for assessing the model's ability to accurately estimate the 

Remaining Useful Life (RUL) of the systems being evaluated. The 

blue data points in Figure 9(b) represent the actual Remaining 

Useful Life (RUL) values, whereas the orange data points represent 

the predictions made by our model. 

Significantly, there is a strong correlation between our 

predictions and the actual data at several places, demonstrating the 

model's efficacy. 

IV.4 HEATMAP 

Understanding the variables influencing battery life and 

performance can be aided by using  heatmap to show the 

correlations between various battery system variables. Based on the 

heatmap in Figure 10, the following inferences can be made: 

 

 Correlation coefficients: range from -1 to 1. 

 Charging time and Discharge Time Correlation is 0.94, 

indicating that these variables are strongly positively 

correlated. 

 Time at 4.15V and Charging time Correlation is 0.68, 

showing a moderate positive relationship. 

 Using 0.78 coefficient, RUL and Maximum Voltage 

Discharge exhibit robust positive association. 

 
Figure 10: Heat map representing dataset characteristics. 

Source: Authors, (2025). 

 

IV.5 PERFORMANCE VALUATION OF MODELS IN 

COMPARISON TO RELATED MODELS 

 

A comparison of performance evaluation values for several 

battery RUL prediction techniques is shown in Table 2. Our 

models’ values are compared to all previous approaches. These 

results show the remarkable accuracy and precision of our 

approach, underscoring its potential for accurate RUL prediction 

and ensuring the stable and efficient functioning of LIB in many 

applications. 

‘The table prominently presents important assessment 

measures, including RMSE. In table 2 comparison of proposed 

model's expected outcomes with those of previous methods. MAE 

in addition to the R2. Lower numbers indicate more accuracy in 

terms of predictive precision, as measured by RMSE and MAE. 

Notably, our suggested methods offering deep insights into its 

exceptional predictive powers. This outcome demonstrates the 

higher predictive ability of models in comparison to alternative 

battery RUL prediction techniques. 

 

Table 2: Comparison of Performance error indices for RUL 

prediction with different models. 

Referance Model MSE RMSE MAE R-Square 

[11] 
GBR 57.447 7.579 4.984 - 

LR 54.543 7.385 4.644 - 

[13] ETR 98.031 9.788 - - 

[15] BR 516.332 22.72 - - 

[18] GBR 54.433 7.853 - - 

[20] KNN - 8.274 7.623 0.995 

Proposed BR 14.307 3.782 2.099 0.999 

Source: Authors, (2025). 

V. CONCLUSION 

This research suggests four different regression models like 

Gradient Boosting Regressor, K-Nearest Neighbor Regressor, 

Bagging Regressor, and Extra Tree Regressor models to forecast 

RUL prediction of LIB life for electric vehicles using real-life 

battery dataset from Hawaii Natural Energy Institute.  Battery 

dataset's error metrics, such as R-Squared, MAE, RMSE, and MSE, 

were then ascertained. The four approaches all showed a noticeable 

variation in relevance when examined using various performance 

error indexes. The results show that BR method is capable of 

accurately and effectively determining RUL of batteries when 

compared with other GBR, KNN and ETR methods. For real-time 

prediction, the calculation time is also reasonable. Future research 

concentrates on applying Hybrid Learning methods to improve 

forecast accuracy. 
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